Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 65(24): 16481-16493, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36480933

RESUMEN

A novel platinum(II) complex 47OMESS(II) and its platinum(IV) derivative 47OMESS(IV) were synthesized and characterized. Cytotoxicity studies against mesenchymal cells (MCs) and lung (A549), breast (MDA-MB-231), and melanoma (A375) cancer cells demonstrated 7-20-fold superior activity for both complexes relative to cisplatin. Remarkably, 47OMESS(IV) demonstrated 17-22-fold greater selectivity toward the cancerous cells compared to the non-cancerous MCs. Western blot analysis on A549 cells showed the involvement of the intrinsic apoptotic pathway. Cellular fractionation and uptake experiments in A549 cells using ICP-mass spectrometry (MS) indicated that 47OMESS(II) and 47OMESS(IV) cross the cellular membrane predominantly via active transport mechanisms. The significant improvement in selectivity that is exhibited by 47OMESS(IV) is reported for the first time for this class of complexes.


Asunto(s)
Antineoplásicos , Platino (Metal) , Humanos , Platino (Metal)/química , Antineoplásicos/farmacología , Antineoplásicos/química , Cisplatino/farmacología , Apoptosis , Células A549 , Línea Celular Tumoral
2.
Toxicol In Vitro ; 83: 105409, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35675845

RESUMEN

Gasoline is an essential petroleum-derived product powering the automotive economy worldwide. This research focused on the Volatile Organic Component (VOC) cocktail resulting from gasoline evaporation. Petroleum fugitive VOC inhalation by petrol station attendants have been widely associated with toxicological and health risks concerns. Another unusual practice in poor nations is gasoline sniffing to get high which can lead to intoxication and organ damages. In this study, a static air/liquid interface methodology was designed to emulate acute human lung-derived cell exposure to all the gasoline-derived generated VOCs. The research investigated the cytotoxic and genotoxic end points resulting from whole gasoline fumes in vitro exposure using A549 cells. Petroleum-derived VOCs were identified and characterized by GC-MS. VOCs exposure was emulated in a controlled environment by evaporating spiked crude gasoline (1 to 100 µl) in a closed exposure chamber. In the chamber, A549 cultured cells on snapwell inserts were exposed on their apical side to various concentrations of generated vapors for one hour at 37 °C to mimic lung exposure. The results indicated that acute gasoline whole VOCs exposure reduced cell viability (IC50 = 485 ppm immediately and IC50 = 516 ppm 24 h post-exposure), disrupted cell membrane integrity though LDH leakage and induced DNA damages. Furthermore, VOC exposure triggered caspase-independent apoptosis in exposed cells through upregulation of apoptotic pathways. Overall, the presented findings generated by the static exposure technique showed a practical and reproducible model that can be used to assess acute crude VOCs mixture toxicity endpoints and cell death pathways.


Asunto(s)
Contaminantes Atmosféricos , Petróleo , Compuestos Orgánicos Volátiles , Células A549 , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Apoptosis , Daño del ADN , Gases , Gasolina/toxicidad , Humanos , Petróleo/toxicidad , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/toxicidad
3.
J Appl Toxicol ; 42(7): 1178-1191, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35001415

RESUMEN

Gasoline exposure has been widely reported in the literature as being toxic to human health. However, the exact underlying molecular mechanisms triggered by its inhalation have not been thoroughly investigated. We herein present a model of sub-chronic, static gasoline vapor inhalation in adult female C57BL/6 mice. Animals were exposed daily to either gasoline vapors (0.86 g/animal/90 min) or ambient air for 5 days/week over 7 consecutive weeks. At the end of the study period, toxic and molecular mechanisms underlying the inflammatory, oxidative, and apoptotic effects triggered by gasoline vapors, were examined in the lungs and liver of gasoline-exposed (GE) mice. Static gasoline exposure induced a significant increase (+21%) in lungs/body weight (BW) ratio in GE versus control (CON) mice along with a pulmonary inflammation attested by histological staining. The latter was consistent with increases in the transcript levels of proinflammatory cytokines [Interleukins (ILs) 4 and 6], respectively by ~ 6- and 4-fold in the lungs of GE mice compared to CON. Interestingly, IL-10 expression was also increased by ~ 10-fold in the lungs of GE mice suggesting an attempt to counterbalance the established inflammation. Moreover, the pulmonary expression of IL-12 and TNF-α was downregulated by 2- and 4-fold, respectively, suggesting the skewing toward Th2 phenotype. Additionally, GE mice showed a significant upregulation in Bax/Bcl-2 ratio, caspases 3, 8, and 9 with no change in JNK expression in the lungs, suggesting the activation of both intrinsic and extrinsic apoptotic pathways. Static gasoline exposure over seven consecutive weeks had a minor hepatic portal inflammation attested by H&E staining along with an increase in the hepatic expression of the mitochondrial complexes in GE mice. Therefore, tissue damage biomarkers highlight the health risks associated with vapor exposure and may present potential therapeutic targets for recovery from gasoline intoxication.


Asunto(s)
Gasolina , Inflamación , Animales , Apoptosis , Femenino , Gasolina/toxicidad , Inflamación/inducido químicamente , Exposición por Inhalación/efectos adversos , Pulmón , Ratones , Ratones Endogámicos C57BL
4.
Drug Chem Toxicol ; 45(3): 1168-1179, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-32847432

RESUMEN

Iris x germanica L., which belongs to the Iridaceae family, has been reported in the literature for its antioxidant properties in acellular chemical-antioxidant assays. Chlorpromazine (CPZ) is an antipsychotic drug known to cause adverse reactions in humans. Oxidative stress is among the main mechanisms by which CPZ exerts its toxicity in animal cell models as well as in the yeast Saccharomyces cerevisiae. In this study we investigated the protective effects of I. germanica L. crude extracts against CPZ toxicity. We demonstrated that methanolic extracts from rhizome (R-M), leaf (L-M) and flower (Fl-M) had potent antioxidant activity by scavenging the free radical DPPH, with half-maximal effective concentrations (EC50) 193, 107, and 174 µg/mL, respectively. R-M, L-M and Fl-M at doses up to 1000 µg/mL, didn't affect yeast cell growth. In addition, we demonstrated for the first time that L-M at 1000 µg/mL and R-M at all tested doses counteracted CPZ toxicity, probably by promoting yeast cell antioxidant agents. The R-M capacity to counteract CPZ toxicity was lost in the yeast strain mutant in catalase-encoding gene (Cta1), while strains mutant in Sod2, Skn7 and Rap1 showed mild or full R-M-induced protective effect against CPZ toxicity. Our results demonstrated that I. germanica L. R-M extract counteracted CPZ toxicity in the yeast cell model. Further studies are planned to isolate the involved bioactive compounds and identify the involved genes and the antioxidant agents.


Asunto(s)
Antioxidantes , Género Iris , Animales , Antioxidantes/farmacología , Clorpromazina/toxicidad , Extractos Vegetales/farmacología , Saccharomyces cerevisiae/genética
5.
Drug Chem Toxicol ; 45(1): 77-87, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31514548

RESUMEN

Chlorpromazine (CPZ) is an antipsychotic phenothiazine which is still commonly prescribed though it causes idiosyncratic toxicity such as cholestasis. CPZ toxicity mechanisms involve oxidative stress among others. Cigarette smoke (CS) causes deleterious effects through diverse mechanisms such as oxidative stress. CS alters drug metabolizing enzymes expression and drug transporters expression and activity in animal cell models as well as in Saccharomyces cerevisiae. CS therefore alters pharmacokinetic and pharmacodynamics of many drugs including CPZ and caffeine whose toxicity is promoted by CS condensate (CSC). CSC interaction with CPZ toxicity deserves investigation. In this study, CSC exerted mild toxicity on Saccharomyces cerevisiae which resisted to this chemical stress after several hours. CPZ toxicity on yeast was dose-dependent and the cells resisted to CPZ up to 40 µM after 24 h of treatment. Yeast cells treated simultaneously with CPZ and a nontoxic CSC dose were less sensitive to CPZ. CSC probably triggers cross-resistance to CPZ. Using Sod1 mutant strain, we showed that this gene is potentially involved in the potential cross-resistance. Other genes encoding stress-related transcription factors could be involved in this process. Nicotine and cadmium chloride, which caused a dose-dependent toxicity individually, acted with CPZ in an additive or synergistic manner in terms of toxicity. Although our results cannot be extrapolated to humans, they clearly show that CSC and its components interact with CPZ toxicity.


Asunto(s)
Clorpromazina , Saccharomyces cerevisiae , Animales , Clorpromazina/toxicidad , Humanos , Estrés Oxidativo , Saccharomyces cerevisiae/genética , Humo/efectos adversos , Fumar
6.
Toxicol In Vitro ; 54: 10-22, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30189235

RESUMEN

Carcinogenic heterocyclic aromatic amines (HAAs) interact with some drug transporters, like the efflux pump BCRP and the organic anion transporters OAT1 and OAT3. The present study was designed to determine whether they can also target activities of the organic cation transporters (OCTs), using mainly OCT1-, OCT2- and OCT3-overexpressing HEK293 cells. Fifteen HAAs were demonstrated to differently alter OCT activities; with a cut-off of at least 50% reduction of transporter activity by 100 µM HAAs, 5/15 HAAs, including Trp-P-1 and Trp-P-2, inhibited activities of OCT1, OCT2 and OCT3, whereas 7/15 HAAs, including PhIP and MeIQx, blocked those of OCT2 and OCT3, 1/15 HAAs reduced those of OCT1 and OCT2 and 2/15 HAAs, including AαC, only that of OCT2. IC50 values of Trp-P-1 and Trp-P-2 towards OCT activities were found to be in the 2-6 µM range, likely not relevant for human exposure to HAAs through smoking or the diet. Trp-P-1 and Trp-P-2 additionally failed to trans-stimulate OCT1 and OCT2 activities and exhibited similar accumulation in OCT1/2-transduced HEK293 cells and control HEK293-MOCK cells. These data demonstrate that HAAs, notably Trp-P-1 and Trp-P-2, interact with OCT1/2, without however being transported, thus likely discarding a major role for OCT1/2 in HAA systemic toxicokinetics.


Asunto(s)
Aminas/farmacología , Compuestos Heterocíclicos/farmacología , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Células HEK293 , Humanos , Proteínas de Transporte de Catión Orgánico/metabolismo
7.
Toxicology ; 409: 129-136, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30118793

RESUMEN

In animals, cigarette smoke may alter pharmacokinetics by altering activity and expression of ABC drug transporters. We previously demonstrated that cigarette smoke condensate (CSC) impairs activity and expression of several hepatic ABC drug transporters which mediate toxicant efflux. However, CSC effects on efflux transporters are still unknown in Saccharomyces cerevisiae which resists diverse chemical stresses, by inducing pleiotropic drug resistance (PDR) genes among others. The yeast ABC transporters are functionally and structurally homologous to the mammalian ones. In this study, Saccharomyces cerevisiae exposure to CSC for 15 min caused a dose-dependent inhibition of rhodamine 123 efflux, whereas a longer exposure (3 h) induced mRNA expression of the ABC PDR efflux pumps Pdr5, Snq2, Pdr 10 and Pdr15, and of Tpo1, a member of the major facilitator superfamily (MFS). CSC also increased toxicity of caffeine, which is handled by two PDR transporters, Pdr5 and Snq2. Taken together, these data demonstrated that yeast efflux transporters are targets of cigarette smoke chemicals, and that Saccharomyces cerevisiae may cope with CSC-induced stress, including the initial efflux inhibition, by induction of the mRNA of several plasma membrane PDR and MFS efflux transporters. Saccharomyces cerevisiae is therefore a valid model to investigate pollutant effects on ABC and MFS transporters.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Cafeína/toxicidad , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/efectos de los fármacos , Humo/efectos adversos , Productos de Tabaco/efectos adversos , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Rodaminas/metabolismo , Saccharomyces cerevisiae/fisiología
8.
Toxicol In Vitro ; 44: 27-35, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28629854

RESUMEN

Cigarette smoke condensate (CSC) has previously been shown to impair activity and expression of hepatic drug transporters. In the present study, we provided evidence that CSC also hinders activity of organic anion transporters (OATs), notably expressed at the kidney level. CSC thus cis-inhibited OAT substrate uptake in OAT1- and OAT3-transfected HEK293 cells, in a concentration-dependent manner (IC50=72.1µg/mL for OAT1 inhibition and IC50=27.3µg/mL for OAT3 inhibition). By contrast, OAT4 as well as the renal organic cation transporter (OCT) 2 were less sensitive to the inhibitory effect of CSC (IC50=351.5µg/mL and IC50=226.2µg/mL, for inhibition of OAT4 and OCT2, respectively). OAT3 activity was further demonstrated to be blocked by some single chemicals present in cigarette smoke such as the heterocyclic amines AαC (IC50=11.3µM) and PhIP (IC50=1.9µM), whereas other major cigarette smoke components used at 100µM, like nicotine, the nitrosamine NNK and the polycyclic aromatic hydrocarbons benzo(a)pyrene and phenanthrene, were without effect. AαC and PhIP however failed to trans-stimulate activity of OAT3, suggesting that they were not substrates for this transporter. Taken together, these data establish OAT1 and OAT3 transporters as targets of cigarette smoke chemicals, which may contribute to smoking-associated pharmacokinetics alterations.


Asunto(s)
Transportadores de Anión Orgánico/antagonistas & inhibidores , Humo/efectos adversos , Productos de Tabaco , Células HEK293 , Humanos , Transportadores de Anión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Proteínas de Transporte de Catión Orgánico/genética
9.
Toxicol In Vitro ; 40: 34-44, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27989701

RESUMEN

The plastic component bisphenol A (BPA) is suspected to exert deleterious effects towards human health and targets various cellular and molecular pathways, including activity of ATP-binding cassette drug transporters. The present study was designed to determine whether BPA and some derivatives, like its substitutes bisphenol F (BPF) and bisphenol S (BPS) and the flame retardant tetrabromobisphenol A (TBBPA), may additionally interact with solute carrier (SLC) drug transporters. Activities of the various following SLC transporters were inhibited in a major way (by >60%) by 100µM bisphenols: OCT1 and MATE1 (by BPA and TBBPA), OATP1B1 (by BPA, BPF and TBBPA), OATP1B3 and NTCP (by TBBPA) and OAT3 (by BPA, BPF, BPS and TBBPA); by contrast, activities of other transporters were not impacted (MATE2-K) or were stimulated (notably OCT1 by BPS and OCT2 by BPF). Transporter inhibitions due to bisphenols were concentrations-dependent, with half maximal inhibitory concentrations (IC50) ranging from 0.5µM to 73.5µM. BPA was finally shown to be not transported by OAT3, although inhibiting this transporter in a competitive manner. Taken together, these data indicate that bisphenols interact with SLC transporters, at concentration levels however rather higher than those occurring in humans in response to environmental exposure.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Transportadores de Anión Orgánico Sodio-Independiente/antagonistas & inhibidores , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Fenoles/farmacología , Bifenilos Polibrominados/farmacología , Sulfonas/farmacología , Línea Celular Tumoral , Células HEK293 , Humanos , Transportadores de Anión Orgánico Sodio-Independiente/genética , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo
10.
Toxicology ; 363-364: 58-71, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27450509

RESUMEN

Smoking is well-known to impair pharmacokinetics, through inducing expression of drug metabolizing enzymes. In the present study, we demonstrated that cigarette smoke condensate (CSC) also alters activity and expression of hepatic drug transporters, which are now recognized as major actors of hepatobiliary elimination of drugs. CSC thus directly inhibited activities of sinusoidal transporters such as OATP1B1, OATP1B3, OCT1 and NTCP as well as those of canalicular transporters like P-glycoprotein, MRP2, BCRP and MATE1, in hepatic transporters-overexpressing cells. CSC similarly counteracted constitutive OATP, NTCP and OCT1 activities in human highly-differentiated hepatic HepaRG cells. In parallel, CSC induced expression of BCRP at both mRNA and protein level in HepaRG cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B1, OATP2B1, OAT2, NTCP, OCT1 and BSEP, and enhanced that of MRP4. Such changes in transporter gene expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a reference activator of the aryl hydrocarbon receptor (AhR) pathway, and were counteracted, for some of them, by siRNA-mediated AhR silencing. This suggests that CSC alters hepatic drug transporter levels via activation of the AhR cascade. Importantly, drug transporter expression regulations as well as some transporter activity inhibitions occurred for a range of CSC concentrations similar to those required for inducing drug metabolizing enzymes and may therefore be hypothesized to be relevant for smokers. Taken together, these data established human hepatic transporters as targets of cigarette smoke, which could contribute to known alteration of pharmacokinetics and some liver adverse effects caused by smoking.


Asunto(s)
Hígado/efectos de los fármacos , Fumar/efectos adversos , Transportadoras de Casetes de Unión a ATP/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/metabolismo , Línea Celular Tumoral , Interacciones Farmacológicas , Humanos , Hígado/citología , Hígado/metabolismo , Interferencia de ARN/efectos de los fármacos , Proteínas Transportadoras de Solutos/efectos de los fármacos , Proteínas Transportadoras de Solutos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...