Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(26): 17679-17690, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38889404

RESUMEN

The complex interrelationships among thermoelectric parameters mean that a priori design of high-performing materials is difficult. However, band engineering can allow the power factor to be optimized through enhancement of the Seebeck coefficient. Herein, using layered Sb2Si2Te6 and Sc2Si2Te6 as model systems, we comprehensively investigate and compare their thermoelectric properties by employing density functional theory combined with semiclassical Boltzmann transport theory. Our simulations reveal that Sb2Si2Te6 exhibits superior electrical conductivity compared to Sc2Si2Te6 due to lower scattering rates and more pronounced band dispersion. Remarkably, despite Sb2Si2Te6 exhibiting a lower lattice thermal conductivity and superior electrical conductivity, Sc2Si2Te6 is predicted to achieve an extraordinary dimensionless figure of merit (ZT) of 3.51 at 1000 K, which significantly surpasses the predicted maximum ZT of 2.76 for Sb2Si2Te6 at 900 K. We find the origin of this behavior to be a combined increase in band (valley) degeneracy and anisotropy upon switching the conduction band orbital character from Sb p to Sc d, yielding a significantly improved Seebeck coefficient. This work suggests that enhancing band degeneracy and anisotropy (complexity) through compositional variation is an effective strategy for improving the thermoelectric performance of layered materials.

2.
Adv Mater ; : e2400343, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640450

RESUMEN

An understanding of the structural properties that allow for optimal cathode performance, and their origin, is necessary for devising advanced cathode design strategies and accelerating the commercialization of next-generation cathodes. High-voltage, Fe- and Mg-substituted LiNi0.5Mn1.5O4 cathodes offer a low-cost, cobalt-free, yet energy-dense alternative to commercial cathodes. In this work, the effect of substitution on several important structure properties is explored, including Ni/Mn ordering, charge distribution, and extrinsic defects. In the cation-disordered samples studied, a correlation is observed between increased Fe/Mg substitution, Li-site defects, and Li-rich impurity phase formation-the concentrations of which are greater for Mg-substituted samples. This is attributed to the lower formation energy of MgLi defects when compared to FeLi defects. Li-site defect-induced impurity phases consequently alter the charge distribution of the system, resulting in increased [Mn3+] with Fe/Mg substitution. In addition to impurity phases, other charge compensators are also investigated to explain the origin of Mn3+ (extrinsic defects, [Ni3+], oxygen vacancies and intrinsic off-stoichiometry), although their effects are found to be negligible.

3.
Chem Mater ; 36(6): 2907-2916, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38558913

RESUMEN

Transparent conducting oxides (TCOs) possess a unique combination of optical transparency and electrical conductivity, making them indispensable in optoelectronic applications. However, their heavy dependence on a small number of established materials limits the range of devices that they can support. The discovery and development of additional wide bandgap oxides that can be doped to exhibit metallic-like conductivity are therefore necessary. In this work, we use hybrid density functional theory to identify a binary Sb(V) system, Sb2O5, as a promising TCO with high conductivity and transparency when doped with fluorine. We conducted a full point defect analysis, finding F-doped Sb2O5 to exhibit degenerate n-type transparent conducting behavior. The inherently large electron affinity found in antimony oxides also widens their application in organic solar cells. Following our previous work on zinc antimonate, this work provides additional support for designing Sb(V)-based oxides as cost-effective TCOs for a broader range of applications.

4.
Inorg Chem ; 63(2): 1151-1165, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38174709

RESUMEN

The Nb2PdxS5 (x ≈ 0.74) superconductor with a Tc of 6.5 K is reduced by the intercalation of lithium in ammonia solution or electrochemically to produce an intercalated phase with expanded lattice parameters. The structure expands by 2% in volume and maintains the C2/m symmetry and rigidity due to the PdS4 units linking the layers. Experimental and computational analysis of the chemically synthesized bulk sample shows that Li occupies triangular prismatic sites between the layers with an occupancy of 0.33(4). This level of intercalation suppresses the superconductivity, with the injection of electrons into the metallic system observed to also reduce the Pauli paramagnetism by ∼40% as the bands are filled to a Fermi level with a lower density of states than in the host material. Deintercalation using iodine partially restores the superconductivity, albeit at a lower Tc of ∼5.5 K and with a smaller volume fraction than in fresh Nb2PdxS5. Electrochemical intercalation reproduces the chemical intercalation product at low Li content (<0.4) and also enables greater reduction, but at higher Li contents (≥0.4) accessed by this route, phase separation occurs with the indication that Li occupies another site.

5.
Faraday Discuss ; 250(0): 377-389, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-37965928

RESUMEN

Poly(nickel-benzene-1,2,4,5-tetrakis(thiolate)) (Ni-btt), an organometallic coordination polymer (OMCP) characterized by the coordination between benzene-1,2,4,5-tetrakis(thiolate) (btt) and Ni2+ ions, has been recognized as a promising p-type thermoelectric material. In this study, we employed a constitutional isomer based on benzene-1,2,3,4-tetrakis(thiolate) (ibtt) to generate the corresponding isomeric polymer, poly(nickel-benzene-1,2,3,4-tetrakis(thiolate)) (Ni-ibtt). Comparative analysis of Ni-ibtt and Ni-btt reveals several common infrared (IR) and Raman features attributed to their similar square-planar nickel-sulfur (Ni-S) coordination. Nevertheless, these two polymer isomers exhibit substantially different backbone geometries. Ni-btt possesses a linear backbone, whereas Ni-ibtt exhibits a more undulating, zig-zag-like structure. Consequently, Ni-ibtt demonstrates slightly higher solubility and an increased bandgap in comparison to Ni-btt. The most noteworthy dissimilarity, however, manifests in their thermoelectric properties. While Ni-btt exhibits p-type behavior, Ni-ibtt demonstrates n-type carrier characteristics. This intriguing divergence prompted further investigation into the influence of OMCP backbone geometry on the electronic structure and, particularly, the thermoelectric properties of these materials.

6.
Inorg Chem ; 63(1): 416-430, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38101319

RESUMEN

Bismuth-based coordination complexes are advantageous over other metal complexes, as bismuth is the heaviest nontoxic element with high spin-orbit coupling and potential optoelectronics applications. Herein, four bismuth halide-based coordination complexes [Bi2Cl6(phen-thio)2] (1), [Bi2Br6(phen-thio)2] (2), [Bi2I6(phen-thio)2] (3), and [Bi2I6(phen-Me)2] (4) were synthesized, characterized, and subjected to detailed photophysical studies. The complexes were characterized by single-crystal X-ray diffraction, powder X-ray diffraction, and NMR studies. Spectroscopic analyses of 1-4 in solutions of different polarities were performed to understand the role of the organic and inorganic components in determining the ground- and excited-state properties of the complexes. The photophysical properties of the complexes were characterized by ground-state absorption, steady-state photoluminescence, microsecond time-resolved photoluminescence, and absorption spectroscopy. Periodic density functional theory (DFT) calculations were performed on the solid-state structures to understand the role of the organic and inorganic parts of the complexes. The studies showed that changing the ancillary ligand from chlorine (Cl) and bromine (Br) to iodine (I) bathochromically shifts the absorption band along with enhancing the absorption coefficient. Also, changing the halides (Cl, Br to I) affects the photoluminescent quantum yields of the ligand-centered (LC) emissive state without markedly affecting the lifetimes. The combined results confirmed that ground-state properties are strongly influenced by the inorganic part, and the lower-energy excited state is LC. This study paves the way to design novel bismuth coordination complexes for optoelectronic applications by rigorously choosing the ligands and bismuth salt.

8.
Chem Mater ; 35(21): 8995-9006, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38027540

RESUMEN

Over one hundred years have passed since the discovery of the p-type transparent conducting material copper iodide, predating the concept of the "electron-hole" itself. Supercentenarian status notwithstanding, little is understood about the charge transport mechanisms in CuI. Herein, a variety of modeling techniques are used to investigate the charge transport properties of CuI, and limitations to the hole mobility over experimentally achievable carrier concentrations are discussed. Poor dielectric response is responsible for extensive scattering from ionized impurities at degenerately doped carrier concentrations, while phonon scattering is found to dominate at lower carrier concentrations. A phonon-limited hole mobility of 162 cm2 V-1 s-1 is predicted at room temperature. The simulated charge transport properties for CuI are compared to existing experimental data, and the implications for future device performance are discussed. In addition to charge transport calculations, the defect chemistry of CuI is investigated with hybrid functionals, revealing that reasonably localized holes from the copper vacancy are the predominant source of charge carriers. The chalcogens S and Se are investigated as extrinsic dopants, where it is found that despite relatively low defect formation energies, they are unlikely to act as efficient electron acceptors due to the strong localization of holes and subsequent deep transition levels.

9.
J Mater Chem A Mater ; 11(31): 16776-16787, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38014403

RESUMEN

Utilising photocatalytic water splitting to produce green hydrogen is the key to reducing the carbon footprint of this crucial chemical feedstock. In this study, density functional theory (DFT) is employed to gain insights into the photocatalytic performance of an up-and-coming photocatalyst Y2Ti2O5S2 from first principles. Eleven non-polar clean surfaces are evaluated at the generalised gradient approximation level to obtain a plate-like Wulff shape that agrees well with the experimental data. The (001), (101) and (211) surfaces are considered further at hybrid-DFT level to determine their band alignments with respect to vacuum. The large band offset between the basal (001) and side (101) and (211) surfaces confirms experimentally observed spatial separation of hydrogen and oxygen evolution facets. Furthermore, relevant optoelectronic bulk properties were established using a combination of hybrid-DFT and many-body perturbation theory. The optical absorption of Y2Ti2O5S2 weakly onsets due to dipole-forbidden transitions, and hybrid Wannier-Mott/Frenkel excitonic behaviour is predicted to occur due to the two-dimensional electronic structure, with an exciton binding energy of 0.4 eV.

10.
Chem Sci ; 14(34): 9175-9185, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37655035

RESUMEN

Building on the extensive exploration of metal oxide and metal halide perovskites, metal nitride perovskites represent a largely unexplored class of materials. We report a multi-tier computational screening of this chemical space. From a pool of 3660 ABN3 compositions covering I-VIII, II-VII, III-VI and IV-V oxidation state combinations, 279 are predicted to be chemically feasible. The ground-state structures of the 25 most promising candidate compositions were explored through enumeration over octahedral tilt systems and global optimisation. We predict 12 dynamically and thermodynamically stable nitride perovskite materials, including YMoN3, YWN3, ZrTaN3, and LaMoN3. These feature significant electric polarisation and low predicted switching electric field, showing similarities with metal oxide perovskites and making them attractive for ferroelectric memory devices.

11.
ACS Appl Mater Interfaces ; 15(33): 39956-39965, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37552034

RESUMEN

Quantifying the crystallographic phases present at a surface is an important challenge in fields such as functional materials and surface science. X-ray photoelectron spectroscopy (XPS) is routinely employed in surface characterization to identify and quantify chemical species through core line analysis. Valence band (VB) spectra contain characteristic but complex features that provide information on the electronic density of states (DoS) and thus can be understood theoretically using density functional theory (DFT). Here, we present a method of fitting experimental photoemission spectra with DFT models for quantitative analysis of heterogeneous systems, specifically mapping the anatase to rutile ratio across the surface of mixed-phase TiO2 thin films. The results were correlated with mapped photocatalytic activity measured using a resazurin-based smart ink. This method allows large-scale functional and surface composition mapping in heterogeneous systems and demonstrates the unique insights gained from DFT-simulated spectra on the electronic structure origins of complex VB spectral features.

12.
Nat Commun ; 14(1): 3638, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37336926

RESUMEN

Transition metal oxides are promising candidates for the next generation of spintronic devices due to their fascinating properties that can be effectively engineered by strain, defects, and microstructure. An excellent example can be found in ferroelastic LaCoO3 with paramagnetism in bulk. In contrast, unexpected ferromagnetism is observed in tensile-strained LaCoO3 films, however, its origin remains controversial. Here we simultaneously reveal the formation of ordered oxygen vacancies and previously unreported long-range suppression of CoO6 octahedral rotations throughout LaCoO3 films. Supported by density functional theory calculations, we find that the strong modification of Co 3d-O 2p hybridization associated with the increase of both Co-O-Co bond angle and Co-O bond length weakens the crystal-field splitting and facilitates an ordered high-spin state of Co ions, inducing an emergent ferromagnetic-insulating state. Our work provides unique insights into underlying mechanisms driving the ferromagnetic-insulating state in tensile-strained ferroelastic LaCoO3 films while suggesting potential applications toward low-power spintronic devices.

13.
J Am Chem Soc ; 145(23): 12509-12517, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37253175

RESUMEN

Chalcohalide mixed-anion crystals have seen a rise in interest as "perovskite-inspired materials" with the goal of combining the ambient stability of metal chalcogenides with the exceptional optoelectronic performance of metal halides. Sn2SbS2I3 is a promising candidate, having achieved a photovoltaic power conversion efficiency above 4%. However, there is uncertainty over the crystal structure and physical properties of this crystal family. Using a first-principles cluster expansion approach, we predict a disordered room-temperature structure, comprising both static and dynamic cation disorder on different crystallographic sites. These predictions are confirmed using single-crystal X-ray diffraction. Disorder leads to a lowering of the bandgap from 1.8 eV at low temperature to 1.5 eV at the experimental annealing temperature of 573 K. Cation disorder tailoring the bandgap allows for targeted application or for the use in a graded solar cell, which when combined with material properties associated with defect and disorder tolerance, encourages further investigation into the group IV/V chalcohalide family for optoelectronic applications.

14.
ACS Appl Energy Mater ; 6(1): 484-495, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36644111

RESUMEN

The development of high-power anode materials for Na-ion batteries is one of the primary obstacles due to the growing demands for their use in the smart grid. Despite the appealingly low cost and non-toxicity, Na2Ti3O7 suffers from low electrical conductivity and poor structural stability, which restricts its use in high-power applications. Viable approaches for overcoming these drawbacks reported to date are aliovalent doping and hydrogenation/hydrothermal treatments, both of which are closely intertwined with native defects. There is still a lack of knowledge, however, of the intrinsic defect chemistry of Na2Ti3O7, which impairs the rational design of high-power titanate anodes. Here, we report hybrid density functional theory calculations of the native defect chemistry of Na2Ti3O7. The defect calculations show that the insulating properties of Na2Ti3O7 arise from the Na and O Schottky disorder that act as major charge compensators. Under high-temperature hydrogenation treatment, these Schottky pairs of Na and O vacancies become dominant defects in Na2Ti3O7, triggering the spontaneous partial phase transition to Na2Ti6O13 and improving the electrical conductivity of the composite anode. Our findings provide an explanation on the interplay between intrinsic defects, structural phase transitions, and electrical conductivity, which can aid understanding of the properties of composite materials obtained from phase transitions.

15.
J Phys Chem C Nanomater Interfaces ; 126(49): 21022-21033, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36561200

RESUMEN

A comprehensive study of bulk molybdenum dichalcogenides is presented with the use of soft and hard X-ray photoelectron (SXPS and HAXPES) spectroscopy combined with hybrid density functional theory (DFT). The main core levels of MoS2, MoSe2, and MoTe2 are explored. Laboratory-based X-ray photoelectron spectroscopy (XPS) is used to determine the ionization potential (IP) values of the MoX2 series as 5.86, 5.40, and 5.00 eV for MoSe2, MoSe2, and MoTe2, respectively, enabling the band alignment of the series to be established. Finally, the valence band measurements are compared with the calculated density of states which shows the role of p-d hybridization in these materials. Down the group, an increase in the p-d hybridization from the sulfide to the telluride is observed, explained by the configuration energy of the chalcogen p orbitals becoming closer to that of the valence Mo 4d orbitals. This pushes the valence band maximum closer to the vacuum level, explaining the decreasing IP down the series. High-resolution SXPS and HAXPES core-level spectra address the shortcomings of the XPS analysis in the literature. Furthermore, the experimentally determined band alignment can be used to inform future device work.

16.
J Mater Chem C Mater ; 10(10): 3784-3795, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36325578

RESUMEN

Four novel compositions containing chalcogenide layers, adopting the Ba3M2O5M'2Ch2 layered structure have been identified: Ba3Sc2O5Cu2Se2, Ba3Y2O5Cu2S2, Ba3Sc2O5Ag2Se2 and Ba3In2O5Ag2Se2. A comprehensive comparison of experimental and computational results providing the crystallographic and electronic structure of the compounds under investigation has been conducted. Materials were synthesised at 800 °C under vacuum using a conventional ceramic synthesis route with combination of binary oxide and chalcogenide precursors. We report their structures determined by Rietveld refinement of X-ray powder diffraction patterns, and band gaps determined from optical measurements, which range from 1.44 eV to 3.04 eV. Through computational modelling we can also present detailed band structures and propose that, based on their predicted transport properties, Ba3Sc2O5Ag2Se2 has potential as a visible light photocatalyst and Ba3Sc2O5Cu2Se2 is of interest as a p-type transparent conductor. These four novel compounds are part of a larger series of sixteen compounds adopting the Ba3M2O5M'2Ch2 structure that we have considered, of which approximately half are stable and can be synthesized. Analysis of the compounds that cannot be synthesized from this group allows us to identify why compounds containing either M = La, or silver sulfide chalcogenide layers, cannot be formed in this structure type.

17.
J Phys Chem Lett ; 13(47): 10965-10975, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36414263

RESUMEN

Low-cost, nontoxic, and earth-abundant photovoltaic materials are long-sought targets in the solar cell research community. Perovskite-inspired materials have emerged as promising candidates for this goal, with researchers employing materials design strategies including structural, dimensional, and compositional transformations to avoid the use of rare and toxic elemental constituents, while attempting to maintain high optoelectronic performance. These strategies have recently been invoked to propose Ti-based vacancy-ordered halide perovskites (A2TiX6; A = CH3NH3, Cs, Rb, or K; X = I, Br, or Cl) for photovoltaic operation, following the initial promise of Cs2SnX6 compounds. Theoretical investigations of these materials, however, consistently overestimate their band gaps, a fundamental property for photovoltaic applications. Here, we reveal strong excitonic effects as the origin of this discrepancy between theory and experiment, a consequence of both low structural dimensionality and band localization. These findings have vital implications for the optoelectronic application of these compounds while also highlighting the importance of frontier-orbital character for chemical substitution in materials design strategies.

18.
ACS Energy Lett ; 7(11): 3807-3816, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36398093

RESUMEN

Transparent conducting oxides have become ubiquitous in modern optoelectronics. However, the number of oxides that are transparent to visible light and have the metallic-like conductivity necessary for applications is limited to a handful of systems that have been known for the past 40 years. In this work, we use hybrid density functional theory and defect chemistry analysis to demonstrate that tri-rutile zinc antimonate, ZnSb2O6, is an ideal transparent conducting oxide and to identify gallium as the optimal dopant to yield high conductivity and transparency. To validate our computational predictions, we have synthesized both powder samples and single crystals of Ga-doped ZnSb2O6 which conclusively show behavior consistent with a degenerate transparent conducting oxide. This study demonstrates the possibility of a family of Sb(V)-containing oxides for transparent conducting oxide and power electronics applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...