Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Polymers (Basel) ; 13(24)2021 Dec 20.
Article En | MEDLINE | ID: mdl-34961015

Complex electrical impedance and dielectric spectroscopy were applied to study the dielectric relaxations and their thermal behavior in ion-conducting composites/complexes from polymer poly(ethylene oxide) (PEO) and E8 nematic liquid crystals (LCs), at the compositional ratio PEO:E8 = 70:30 wt%. Flexible thin films of PEO/E8 with a thickness of 150 µm were inspected, as well as such films from Na+ ion-conducting electrolyte PEO/E8/NaIO4 with the same PEO:E8 compositional ratio, but additionally containing 10 wt.% from the salt sodium metaperiodate (NaIO4) as a dopant of Na+ ions. The molecular dynamics, namely the dielectric relaxation of PEO/E8 and PEO/E8/NaIO4, were characterized through analyses of complex impedance and dielectric spectra measured in the frequency range of 1 Hz-1 MHz, under variation of temperature from below to above the glass-transition temperature of these composites. The relaxation and polarization of dipole formations in PEO/E8 and PEO/E8/NaIO4 were evidenced and compared in terms of both electrical impedance and dielectric response depending on temperature. The results obtained for molecular organization, molecular relaxation dynamics, and electric polarization in the studied ion-conducting polymer/LC composites/complexes can be helpful in the optimization of their structure and performance, and are attractive for applications in flexible organic electronics, energy storage devices, and mechatronics.

2.
ACS Macro Lett ; 3(1): 91-95, 2014 Jan 21.
Article En | MEDLINE | ID: mdl-35651116

We report the synthesis and structural characterization of a main-chain liquid crystal polymer constituted by a 1,2,4-oxadiazole-based bent-core repeat unit. For the first time, a liquid crystal polymer made of bent mesogenic units is demonstrated to exhibit cybotactic order in the nematic phase. Coupled with the chain-bond constraints, cybotaxis results in maximized molecular correlations that make this material of great potential in the search for the elusive biaxial and ferroelectric nematic phases. Indeed, repolarization current measurements in the nematic phase hint at a ferroelectric-like switching response (upon application of an electric field of only 1.0 V µm-1) that, albeit to be definitely confirmed by complementary techniques, is strongly supported by the comparative repolarization current measurements in the nematic and isotropic phases. Finally, the weak tendency of this polymer to crystallize makes it possible to supercool the cybotactic nematic phase down to room temperature, thus, paving the way for a glassy phase in which the biaxial (and possibly polar) order is frozen at room temperature.

3.
Opt Express ; 14(7): 2695-705, 2006 Apr 03.
Article En | MEDLINE | ID: mdl-19516401

We report a detailed physical characterization of a novel array of organic distributed feedback microcavity lasers possessing a high ratio between the quality factor Q of the resonant cavity and its volume V. The optical microcavity was obtained by confining self-organized mesophases doped with fluorescent guest molecules into holographically patterned polymeric microchannels. The liquid crystal microchannels act as mirror-less cavity lasers, where the emitted laser light propagates along the liquid crystal helical axis behaving as Bragg resonator. This miniaturization process allows us to obtain a micro-laser array possessing an ultralow lasing threshold (25nJ/pulse) while having directional control on the lasing emission, a fine wavelength tunability and the control over the emission intensity.

4.
Phys Rev Lett ; 94(6): 063903, 2005 Feb 18.
Article En | MEDLINE | ID: mdl-15783732

Distributed feedback microstructures play a fundamental role in confining and manipulating light to obtain lasing in media with gain. Here, we present an innovative array of organic, color-tunable microlasers which are intrinsically phase locked. Dye-doped helixed liquid crystals were embedded within periodic, polymeric microchannels sculptured by light through a single-step process. The helical superstructure was oriented along the microchannels; the lasing was observed along the same direction at the red edge of the stop band. Several physical and technological advantages arise from this engineered heterostructure: a high quality factor of the cavity, ultralow lasing threshold, and thermal and electric control of the lasing wavelength and emission intensity. This level of integration of guest-host systems, embedded in artificially patterned small sized structures, might lead to new photonic chip architectures.

...