Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
HGG Adv ; 5(3): 100314, 2024 May 29.
Article En | MEDLINE | ID: mdl-38816995

Inherited retinal diseases (IRDs) are a group of rare monogenic diseases with high genetic heterogeneity (pathogenic variants identified in over 280 causative genes). The genetic diagnostic rate for IRDs is around 60%, mainly thanks to the routine application of next-generation sequencing (NGS) approaches such as extensive gene panels or whole exome analyses. Whole-genome sequencing (WGS) has been reported to improve this diagnostic rate by revealing elusive variants, such as structural variants (SVs) and deep intronic variants (DIVs). We performed WGS on 33 unsolved cases with suspected autosomal recessive IRD, aiming to identify causative genetic variants in non-coding regions or to detect SVs that were unexplored in the initial screening. Most of the selected cases (30 of 33, 90.9%) carried monoallelic pathogenic variants in genes associated with their clinical presentation, hence we first analyzed the non-coding regions of these candidate genes. Whenever additional pathogenic variants were not identified with this approach, we extended the search for SVs and DIVs to all IRD-associated genes. Overall, we identified the missing causative variants in 11 patients (11 of 33, 33.3%). These included three DIVs in ABCA4, CEP290 and RPGRIP1; one non-canonical splice site (NCSS) variant in PROM1 and three SVs (large deletions) in EYS, PCDH15 and USH2A. For the previously unreported DIV in CEP290 and for the NCCS variant in PROM1, we confirmed the effect on splicing by reverse transcription (RT)-PCR on patient-derived RNA. This study demonstrates the power and clinical utility of WGS as an all-in-one test to identify disease-causing variants missed by standard NGS diagnostic methodologies.

2.
Am J Med Genet A ; 194(5): e63517, 2024 May.
Article En | MEDLINE | ID: mdl-38149346

Mucopolysaccharidosis type IIIA (MPS IIIA or Sanfilippo syndrome type A) is an autosomal recessive lysosomal storage disorder caused by pathogenic variants in the SGSH gene encoding N-sulfoglucosamine sulfohydrolase, an enzyme involved in the degradation of heparan sulfate. MPS IIIA is typically characterized by neurocognitive decline and hepatosplenomegaly with childhood onset. Here, we report on a 53-year-old male subject initially diagnosed with Usher syndrome for the concurrence of retinitis pigmentosa and sensorineural hearing loss. Clinical exome sequencing identified biallelic missense variants in SGSH, and biochemical assays showed complete deficiency of sulfamidase activity and increased urinary glycosaminoglycan excretion. Reverse phenotyping revealed left ventricle pseudo-hypertrophy, hepatosplenomegaly, bilateral deep white matter hyperintensities upon brain MRI, and decreased cortical metabolic activity by PET-CT. On neuropsychological testing, the proband presented only partial and isolated verbal memory deficits. This case illustrates the power of unbiased, comprehensive genetic testing for the diagnosis of challenging mild or atypical forms of MPS IIIA.


Mucopolysaccharidosis III , Usher Syndromes , Male , Humans , Child , Middle Aged , Mucopolysaccharidosis III/diagnosis , Mucopolysaccharidosis III/genetics , Hydrolases/genetics , Positron Emission Tomography Computed Tomography , Usher Syndromes/diagnosis , Usher Syndromes/genetics , Genetic Testing , Hepatomegaly/genetics
3.
EMBO Rep ; 24(2): e53801, 2023 02 06.
Article En | MEDLINE | ID: mdl-36472244

Adult neural progenitor cells (aNPCs) ensure lifelong neurogenesis in the mammalian hippocampus. Proper regulation of aNPC fate has thus important implications for brain plasticity and healthy aging. Piwi proteins and the small noncoding RNAs interacting with them (piRNAs) have been proposed to control memory and anxiety, but the mechanism remains elusive. Here, we show that Piwil2 (Mili) is essential for proper neurogenesis in the postnatal mouse hippocampus. RNA sequencing of aNPCs and their differentiated progeny reveal that Mili and piRNAs are dynamically expressed in neurogenesis. Depletion of Mili and piRNAs in the adult hippocampus impairs aNPC differentiation toward a neural fate, induces senescence, and generates reactive glia. Transcripts modulated upon Mili depletion bear sequences complementary or homologous to piRNAs and include repetitive elements and mRNAs encoding essential proteins for proper neurogenesis. Our results provide evidence of a critical role for Mili in maintaining fitness and proper fate of aNPCs, underpinning a possible involvement of the piRNA pathway in brain plasticity and successful aging.


Argonaute Proteins , Hippocampus , Neurogenesis , Animals , Mice , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Cellular Senescence/genetics , Hippocampus/metabolism , Mammals/genetics , Mammals/metabolism , Neurogenesis/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
4.
Sci Rep ; 12(1): 20815, 2022 12 02.
Article En | MEDLINE | ID: mdl-36460718

Inherited retinal diseases (IRDs) are the leading cause of vision loss in the working-age population. We performed a retrospective epidemiological study to determine the genetic basis of IRDs in a large Italian cohort (n = 2790) followed at a single referral center. We provided, mainly by next generation sequencing, potentially conclusive molecular diagnosis for 2036 patients (from 1683 unrelated families). We identified a total of 1319 causative sequence variations in 132 genes, including 353 novel variants, and 866 possibly actionable genotypes for therapeutic approaches. ABCA4 was the most frequently mutated gene (n = 535; 26.3% of solved cases), followed by USH2A (n = 228; 11.2%) and RPGR (n = 102; 5.01%). The other 129 genes had a lower contribution to IRD pathogenesis (e.g. CHM 3.5%, RHO 3.5%; MYO7A 3.4%; CRB1 2.7%; RPE65 2%, RP1 1.8%; GUCY2D 1.7%). Seventy-eight genes were mutated in five patients or less. Mitochondrial DNA variants were responsible for 2.1% of cases. Our analysis confirms the complex genetic etiology of IRDs and reveals the high prevalence of ABCA4 and USH2A mutations. This study also uncovers genetic associations with a spectrum of clinical subgroups and highlights a valuable number of cases potentially eligible for clinical trials and, ultimately, for molecular therapies.


Retinal Diseases , Humans , Molecular Epidemiology , Retrospective Studies , Retinal Diseases/epidemiology , Retinal Diseases/genetics , Retina , Italy/epidemiology , Eye Proteins/genetics , ATP-Binding Cassette Transporters/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins
5.
Mol Ther ; 28(2): 642-652, 2020 02 05.
Article En | MEDLINE | ID: mdl-31495777

Glial cell-derived neurotrophic factor (GDNF) has a potent action in promoting the survival of dopamine (DA) neurons. Several studies indicate that increasing GDNF levels may be beneficial for the treatment of Parkinson's disease (PD) by reducing neurodegeneration of DA neurons. Despite a plethora of preclinical studies showing GDNF efficacy in PD animal models, its application in humans remains questionable for its poor efficacy and side effects due to its uncontrolled, ectopic expression. Here we took advantage of SINEUPs, a new class of antisense long non-coding RNA, that promote translation of partially overlapping sense protein-coding mRNAs with no effects on their mRNA levels. By synthesizing a SINEUP targeting Gdnf mRNA, we were able to increase endogenous GDNF protein levels by about 2-fold. Adeno-associated virus (AAV)9-mediated delivery in the striatum of wild-type (WT) mice led to an increase of endogenous GDNF protein for at least 6 months and the potentiation of the DA system's functions while showing no side effects. Furthermore, SINEUP-GDNF was able to ameliorate motor deficits and neurodegeneration of DA neurons in a PD neurochemical mouse model. Our data indicate that SINEUP-GDNF could represent a new strategy to increase endogenous GDNF protein levels in a more physiological manner for therapeutic treatments of PD.


Glial Cell Line-Derived Neurotrophic Factor/genetics , Motor Neurons/metabolism , Parkinson Disease/genetics , RNA Interference , RNA, Untranslated/genetics , Animals , Corpus Striatum/metabolism , Corpus Striatum/pathology , Dependovirus/genetics , Disease Models, Animal , Dopaminergic Neurons/metabolism , Gene Expression Regulation , Gene Transfer Techniques , Genetic Vectors/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Humans , Immunohistochemistry , Mice , Motor Neurons/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Phenotype
6.
BMC Bioinformatics ; 20(Suppl 9): 484, 2019 Nov 22.
Article En | MEDLINE | ID: mdl-31757208

BACKGROUND: Transposable Elements (TE) are mobile sequences that make up large portions of eukaryote genomes. The functions they play within the complex cellular architecture are still not clearly understood, but it is becoming evident that TE have a role in several physiological and pathological processes. In particular, it has been shown that TE transcription is necessary for the correct development of mice embryos and that their expression is able to finely modulate transcription of coding and non-coding genes. Moreover, their activity in the central nervous system (CNS) and other tissues has been correlated with the creation of somatic mosaicisms and with pathologies such as neurodevelopmental and neurodegenerative diseases as well as cancers. RESULTS: We analyzed TE expression among different cell types of the Caenorhabditis elegans (C. elegans) early embryo asking if, where and when TE are expressed and whether their expression is correlated with genes playing a role in early embryo development. To answer these questions, we took advantage of a public C. elegans embryonic single-cell RNA-seq (sc-RNAseq) dataset and developed a bioinformatics pipeline able to quantify reads mapping specifically against TE, avoiding counting reads mapping on TE fragments embedded in coding/non-coding transcripts. Our results suggest that i) canonical TE expression analysis tools, which do not discard reads mapping on TE fragments embedded in annotated transcripts, may over-estimate TE expression levels, ii) Long Terminal Repeats (LTR) elements are mostly expressed in undifferentiated cells and might play a role in pluripotency maintenance and activation of the innate immune response, iii) non-LTR are expressed in differentiated cells, in particular in neurons and nervous system-associated tissues, and iv) DNA TE are homogenously expressed throughout the C. elegans early embryo development. CONCLUSIONS: TE expression appears finely modulated in the C. elegans early embryo and different TE classes are expressed in different cell types and stages, suggesting that TE might play diverse functions during early embryo development.


Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , DNA Transposable Elements/genetics , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Animals , Cell Lineage/genetics , Computational Biology , Embryo, Nonmammalian/cytology , Embryonic Development/genetics , Immunity, Innate/genetics , Pluripotent Stem Cells/metabolism , Terminal Repeat Sequences/genetics
7.
Chromosome Res ; 23(3): 533-44, 2015 Sep.
Article En | MEDLINE | ID: mdl-26363800

In this study, we investigated by in silico analysis the possible correlation between microRNAs (miRNAs) and Anamnia V-SINEs (a superfamily of short interspersed nuclear elements), which belong to those retroposon families that have been preserved in vertebrate genomes for millions of years and are actively transcribed because they are embedded in the 3' untranslated region (UTR) of several genes. We report the results of the analysis of the genomic distribution of these mobile elements in zebrafish (Danio rerio) and discuss their involvement in generating miRNA gene loci. The computational study showed that the genes predicted to bear V-SINEs can be targeted by miRNAs with a very high hybridization E-value. Gene ontology analysis indicates that these genes are mainly involved in metabolic, membrane, and cytoplasmic signaling pathways. Nearly all the miRNAs that were predicted to target the V-SINEs of these genes, i.e., miR-338, miR-9, miR-181, miR-724, miR-735, and miR-204, have been validated in similar regulatory roles in mammals. The large number of genes bearing a V-SINE involved in metabolic and cellular processes suggests that V-SINEs may play a role in modulating cell responses to different stimuli and in preserving the metabolic balance during cell proliferation and differentiation. Although they need experimental validation, these preliminary results suggest that in the genome of D. rerio, as in other TE families in vertebrates, the preservation of V-SINE retroposons may also have been favored by their putative role in gene network modulation.


Gene Expression Regulation , MicroRNAs/genetics , Short Interspersed Nucleotide Elements/genetics , Zebrafish/genetics , 3' Untranslated Regions , Animals , Binding Sites , Chromosome Mapping , Computational Biology/methods , Gene Ontology , Genome , Genomics , MicroRNAs/chemistry , Multigene Family , RNA Interference , RNA, Messenger/chemistry , RNA, Messenger/genetics , Sequence Analysis, RNA
8.
Int J Mol Sci ; 16(1): 1755-71, 2015 Jan 13.
Article En | MEDLINE | ID: mdl-25590302

Alternative splicing is a pervasive mechanism of RNA maturation in higher eukaryotes, which increases proteomic diversity and biological complexity. It has a key regulatory role in several physiological and pathological states. The diffusion of Next Generation Sequencing, particularly of RNA-Sequencing, has exponentially empowered the identification of novel transcripts revealing that more than 95% of human genes undergo alternative splicing. The highest rate of alternative splicing occurs in transcription factors encoding genes, mostly in Krüppel-associated box domains of zinc finger proteins. Since these molecules are responsible for gene expression, alternative splicing is a crucial mechanism to "regulate the regulators". Indeed, different transcription factors isoforms may have different or even opposite functions. In this work, through a targeted re-analysis of our previously published RNA-Sequencing datasets, we identified nine novel transcripts in seven transcription factors genes. In silico analysis, combined with RT-PCR, cloning and Sanger sequencing, allowed us to experimentally validate these new variants. Through computational approaches we also predicted their novel structural and functional properties. Our findings indicate that alternative splicing is a major determinant of transcription factor diversity, confirming that accurate analysis of RNA-Sequencing data can reliably lead to the identification of novel transcripts, with potentially new functions.


Transcription Factors/genetics , Alternative Splicing , Amino Acid Sequence , Animals , Base Sequence , Cell Line , High-Throughput Nucleotide Sequencing , Humans , Models, Molecular , Molecular Sequence Data , Protein Isoforms/chemistry , Protein Isoforms/genetics , Proteomics , Sequence Alignment , Sequence Analysis, RNA , Transcription Factors/chemistry
9.
Gene ; 547(1): 98-105, 2014 Aug 15.
Article En | MEDLINE | ID: mdl-24952135

Mediator (MED) complex is a multiprotein playing a key role in the eukaryotic transcription. Alteration of MED function may have enormous pathophysiological consequences and several MED genes have been implicated in human diseases. Here, we have combined computational and experimental approaches to identify and characterize, new transcripts generated by alternative splicing (AS) for all MED genes, through the analysis of our recently published RNA-Sequencing datasets of endothelial progenitor cells (EPCs). This combined strategy allowed us to identify novel transcripts for MED4, MED9, MED11, MED14, MED27 and CDK8 most of them generated by AS. All the newly identified transcripts, except MED11, are predicted to encode novel protein isoforms. The identification of novel MED variants could lead to the finding of other MED complexes with different functions depending on their subunit composition. Finally, the expression profile of all MED genes, together with an extensive gene expression analysis, may be useful to better classify the diverse subsets of cell populations that contribute to neovascularization.


Endothelial Cells/cytology , Mediator Complex/genetics , RNA, Messenger/genetics , Sequence Analysis, RNA , Stem Cells/cytology , Amino Acid Sequence , Binding Sites , Cells, Cultured , Humans , Mediator Complex/chemistry , MicroRNAs/metabolism , Molecular Sequence Data , Sequence Homology, Amino Acid
10.
Database (Oxford) ; 2014: bau009, 2014.
Article En | MEDLINE | ID: mdl-24573881

Transcriptome studies have shown the pervasive nature of transcription, demonstrating almost all the genes undergo alternative splicing. Accurately annotating all transcripts of a gene is crucial. It is needed to understand the impact of mutations on phenotypes, to shed light on genetic and epigenetic regulation of mRNAs and more generally to widen our knowledge about cell functionality and tissue diversity. RNA-sequencing (RNA-Seq), and the other applications of the next-generation sequencing, provides precious data to improve annotations' accuracy, simultaneously creating issues related to the variety, complexity and the size of produced data. In this 'scenario', the lack of user-friendly resources, easily accessible to researchers with low skills in bioinformatics, makes difficult to retrieve complete information about one or few genes without browsing a jungle of databases. Concordantly, the increasing amount of data from 'omics' technologies imposes to develop integrated databases merging different data formats coming from distinct but complementary sources. In light of these considerations, and given the wide interest in studying Down syndrome-a genetic condition due to the trisomy of human chromosome 21 (HSA21)-we developed an integrated relational database and a web interface, named ALE-HSA21 (AnaLysis of Expression on HSA21), accessible at http://bioinfo.na.iac.cnr.it/ALE-HSA21. This comprehensive and user-friendly web resource integrates-for all coding and noncoding transcripts of chromosome 21-existing gene annotations and transcripts identified de novo through RNA-Seq analysis with predictive computational analysis of regulatory sequences. Given the role of noncoding RNAs and untranslated regions of coding genes in key regulatory mechanisms, ALE-HSA21 is also an interesting web-based platform to investigate such processes. The 'transcript-centric' and easily-accessible nature of ALE-HSA21 makes this resource a valuable tool to rapidly retrieve data at the isoform level, rather than at gene level, useful to investigate any disease, molecular pathway or cell process involving chromosome 21 genes. Database URL: http://bioinfo.na.iac.cnr.it/ALE-HSA21/.


Chromosomes, Human, Pair 21/genetics , Gene Expression Regulation , Internet , Base Sequence , Computer Simulation , Data Collection , Databases, Genetic , Humans , MicroRNAs/genetics , Molecular Sequence Data , Pilot Projects , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated/genetics , Reproducibility of Results , Sequence Analysis, RNA
11.
PLoS One ; 7(11): e49653, 2012.
Article En | MEDLINE | ID: mdl-23166739

Bartonella henselae is able to internalize endothelial progenitor cells (EPCs), which are resistant to the infection of other common pathogens. Bacteroides fragilis is a gram-negative anaerobe belonging to the gut microflora. It protects from experimental colitis induced by Helicobacter hepaticus through the polysaccharide A (PSA). The aim of our study was to establish: 1) whether B. fragilis colonization could protect from B. henselae infection; if this event may have beneficial effects on EPCs, vascular system and tissues. Our in vitro results establish for the first time that B. fragilis can internalize EPCs and competes with B. henselae during coinfection. We observed a marked activation of the inflammatory response by Real-time PCR and ELISA in coinfected cells compared to B. henselae-infected cells (63 vs 23 up-regulated genes), and after EPCs infection with mutant B. fragilis ΔPSA (≅90% up-regulated genes) compared to B. fragilis. Interestingly, in a mouse model of coinfection, morphological and ultrastructural analyses by hematoxylin-eosin staining and electron microscopy on murine tissues revealed that damages induced by B. henselae can be prevented in the coinfection with B. fragilis but not with its mutant B. fragilis ΔPSA. Moreover, immunohistochemistry analysis with anti-Bartonella showed that the number of positive cells per field decreased of at least 50% in the liver (20±4 vs 50±8), aorta (5±1 vs 10±2) and spleen (25±3 vs 40±6) sections of mice coinfected compared to mice infected only with B. henselae. This decrease was less evident in the coinfection with ΔPSA strain (35±6 in the liver, 5±1 in the aorta and 30±5 in the spleen). Finally, B. fragilis colonization was also able to restore the EPC decrease observed in mice infected with B. henselae (0.65 vs 0.06 media). Thus, our data establish that B. fragilis colonization is able to prevent B. henselae damages through PSA.


Angiomatosis, Bacillary/microbiology , Antibiosis , Bacteroides Infections/microbiology , Bacteroides fragilis/physiology , Bartonella henselae/physiology , Angiomatosis, Bacillary/genetics , Angiomatosis, Bacillary/pathology , Animals , Bacteroides Infections/genetics , Bacteroides Infections/pathology , Cluster Analysis , Coinfection , Cytokines/genetics , Disease Models, Animal , Endothelial Cells/microbiology , Female , Gene Expression Profiling , Host-Pathogen Interactions , Humans , Inflammation/genetics , Inflammation/microbiology , Mice , Polysaccharides, Bacterial , Stem Cells/microbiology
...