Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 947: 174446, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38964415

RESUMEN

Bioavailability of potentially toxic elements (PTEs) from the Earth's crust in the soil, e.g., As, Hg, Tl, and Pb, can pose a potential environmental and health risk because of human activities, especially related to mining extraction. The biomonitoring allows to detect PTE contamination through their measurement in living organisms as trees. However, the choice of which plant species and tissue to analyse is a key point to be evaluated in relation to PTE absorption and translocation. The aim of this work was to assess the As, Hg, Tl, and Pb distribution in Castanea sativa Mill. plant tissues, given its importance for both biomass and food production. The study identified two sites in the Alpi Apuane (Italy), with similar environmental conditions (e.g., elevation, exposure, forest type, and tree species) but different soil PTE levels. The topsoil was characterized, and the PTE fractions with different bioavailability were measured. The PTE concentrations were also analysed in chestnut plant tissues (leaves, bark, wood, nuts, and shells) in parallel with and evaluation of plant health status through the determination of micro and macronutrient concentrations and the leaf C and N isotope composition (δ13C or δ15N). Chestnut trees showed a good health status highlighting its suitability for Tl, As, Hg, and Pb biomonitoring, displaying a tissue-specific PTE allocation. Thallium and Hg were detected in all plant tissues at similar concentrations, As was found in leaves, wood, and nuts while Pb only in the bark. The δ15N negatively correlated with leaf Mn and Tl concentrations, suggesting possible changes in N source and/or plant metabolism due to the high contamination level and acid soil pH. Thallium in La Culla site trees was associated with its presence in the carbonate rocks but not in the topsoil, highlighting the potentiality of chestnut in providing valuable information for geochemical surveying.


Asunto(s)
Monitoreo del Ambiente , Fagaceae , Plomo , Minería , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Italia , Plomo/análisis , Plomo/metabolismo , Mercurio/análisis , Mercurio/metabolismo , Arsénico/análisis , Arsénico/metabolismo , Talio/análisis , Monitoreo Biológico/métodos
2.
Plants (Basel) ; 13(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38337911

RESUMEN

Water and soil salinity continuously rises due to climate change and irrigation with reused waters. Guayule (Parthenium argentatum A. Gray) is a desert perennial shrub native to northern Mexico and the southwestern United States; it is known worldwide for rubber production and is suitable for cultivation in arid and semiarid regions, such as the Mediterranean. In the present study, we investigated the effects of high and increasing concentrations of sodium chloride (NaCl) on the growth and the morphophysiological and biochemical characteristics of guayule to evaluate its tolerance to salt stress and suitability in phytomanagement and, eventually, the phytodesalinisation of salt-affected areas. Guayule originates from desert areas, but has not been found in salt-affected soils; thus, here, we tested the potential tolerance to salinity of this species, identifying the toxicity threshold and its possible sodium (Na) accumulation capacity. In a hydroponic floating root system, guayule seedlings were subjected to salinity-tolerance tests using increasing NaCl concentrations (from 2.5 to 40 g L-1 and from 43 to 684 mM). The first impairments in leaf morphophysiological traits appeared after adding 15 g L-1 (257 mM) NaCl, but the plants survived up to the hypersaline conditions of 35-40 g L-1 NaCl (about 600 mM). The distribution of major cell cations modulated the high Na content in the leaves, stems and roots; Na bioconcentration and translocation factors were close to one and greater than one, respectively. This is the first study on the morphophysiological and (bio)chemical response of guayule to different high and increasing levels of NaCl, showing the parameters and indices useful for identifying its salt tolerance threshold, adaptative mechanisms and reclamation potential in high-saline environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA