Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Stem Cell ; 31(7): 1072-1090.e8, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38754429

RESUMEN

Gastrulation is a critical stage in embryonic development during which the germ layers are established. Advances in sequencing technologies led to the identification of gene regulatory programs that control the emergence of the germ layers and their derivatives. However, proteome-based studies of early mammalian development are scarce. To overcome this, we utilized gastruloids and a multilayered mass spectrometry-based proteomics approach to investigate the global dynamics of (phospho) protein expression during gastruloid differentiation. Our findings revealed many proteins with temporal expression and unique expression profiles for each germ layer, which we also validated using single-cell proteomics technology. Additionally, we profiled enhancer interaction landscapes using P300 proximity labeling, which revealed numerous gastruloid-specific transcription factors and chromatin remodelers. Subsequent degron-based perturbations combined with single-cell RNA sequencing (scRNA-seq) identified a critical role for ZEB2 in mouse and human somitogenesis. Overall, this study provides a rich resource for developmental and synthetic biology communities endeavoring to understand mammalian embryogenesis.


Asunto(s)
Linaje de la Célula , Desarrollo Embrionario , Proteómica , Animales , Ratones , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Análisis de la Célula Individual , Diferenciación Celular , Gástrula/metabolismo , Gastrulación
2.
PeerJ ; 11: e16380, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025697

RESUMEN

Sequencing databases contain enormous amounts of functional genomics data, making them an extensive resource for genome-scale analysis. Reanalyzing publicly available data, and integrating it with new, project-specific data sets, can be invaluable. With current technologies, genomic experiments have become feasible for virtually any species of interest. However, using and integrating this data comes with its challenges, such as standardized and reproducible analysis. Seq2science is a multi-purpose workflow that covers preprocessing, quality control, visualization, and analysis of functional genomics sequencing data. It facilitates the downloading of sequencing data from all major databases, including NCBI SRA, EBI ENA, DDBJ, GSA, and ENCODE. Furthermore, it automates the retrieval of any genome assembly available from Ensembl, NCBI, and UCSC. It has been tested on a variety of species, and includes diverse workflows such as ATAC-, RNA-, and ChIP-seq. It consists of both generic as well as advanced steps, such as differential gene expression or peak accessibility analysis and differential motif analysis. Seq2science is built on the Snakemake workflow language and thus can be run on a range of computing infrastructures. It is available at https://github.com/vanheeringen-lab/seq2science.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Flujo de Trabajo , Genómica , Secuenciación de Inmunoprecipitación de Cromatina
3.
Bioinformatics ; 39(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36882164

RESUMEN

MOTIVATION: Analyzing a functional genomics experiment, such as ATAC-, ChIP-, or RNA-sequencing, requires genomic resources such as a reference genome assembly and gene annotation. These data can generally be retrieved from different organizations and in different versions. Most bioinformatic workflows require the user to supply this genomic data manually, which can be a tedious and error-prone process. RESULTS: Here, we present genomepy, which can search, download, and preprocess the right genomic data for your analysis. Genomepy can search genomic data on NCBI, Ensembl, UCSC, and GENCODE, and inspect available gene annotations to enable an informed decision. The selected genome and gene annotation can be downloaded and preprocessed with sensible, yet controllable, defaults. Additional supporting data can be automatically generated or downloaded, such as aligner indexes, genome metadata, and blacklists. AVAILABILITY AND IMPLEMENTATION: Genomepy is freely available at https://github.com/vanheeringen-lab/genomepy under the MIT license and can be installed through pip or Bioconda.


Asunto(s)
Genoma , Programas Informáticos , Genómica/métodos , Biología Computacional , Anotación de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA