Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(23): 233002, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38905657

RESUMEN

We experimentally study the influence of the binding energy on nondipole effects in K-shell single-photon ionization of atoms at high photon energies. We find that for each ionization event, as expected by momentum conservation, the photon momentum is transferred almost fully to the recoiling ion. The momentum distribution of the electrons becomes asymmetrically deformed along the photon propagation direction with a mean value of 8/(5c)(E_{γ}-I_{P}) confirming an almost 100 year old prediction by Sommerfeld and Schur [Ann. Phys. (N.Y.) 396, 409 (1930)10.1002/andp.19303960402]. The emission direction of the photoions results from competition between the forward-directed photon momentum and the backward-directed recoil imparted by the photoelectron. Which of the two counteracting effects prevails depends on the binding energy of the emitted electron. As an example, we show that at 20 keV photon energy, Ne^{+} and Ar^{+} photoions are pushed backward towards the radiation source, while Kr^{+} photoions are emitted forward along the light propagation direction.

2.
Phys Rev Lett ; 132(12): 123202, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38579236

RESUMEN

We studied strong-field multiphoton ionization of 1-iodo-2-methylbutane enantiomers with 395 nm circularly polarized laser pulses experimentally and theoretically. For randomly oriented molecules, we observe spin polarization up to about 15%, which is independent of the molecular enantiomer. Our experimental findings are explained theoretically as an intricate interplay between three contributions from HOMO, HOMO-1, and HOMO-2, which are formed of 5p-electrons of the iodine atom. For uniaxially oriented molecules, our theory demonstrates even larger spin polarization. Moreover, we predict a sizable enantiosensitive photoelectron circular dichroism of about 10%, which is different for different spin states of photoelectrons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA