Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1848(5): 1119-26, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25644870

RESUMEN

Dengue virus (DENV) infection is a growing public health threat with more than one-third of the world's population at risk. Non-structural protein 4A (NS4A), one of the least characterized viral proteins, is a highly hydrophobic transmembrane protein thought to induce the membrane alterations that harbor the viral replication complex. The NS4A N-terminal (amino acids 1-48), has been proposed to contain an amphipathic α-helix (AH). Mutations (L6E; M10E) designed to reduce the amphipathic character of the predicted AH, abolished viral replication and reduced NS4A oligomerization. Nuclear magnetic resonance (NMR) spectroscopy was used to characterize the N-terminal cytoplasmic region (amino acids 1-48) of both wild type and mutant NS4A in the presence of SDS micelles. Binding of the two N-terminal NS4A peptides to liposomes was studied as a function of membrane curvature and lipid composition. The NS4A N-terminal was found to contain two AHs separated by a non-helical linker. The above mentioned mutations did not significantly affect the helical secondary structure of this domain. However, they reduced the affinity of the N-terminal NS4A domain for lipid membranes. Binding of wild type NS4A(1-48) to liposomes is highly dependent on membrane curvature.


Asunto(s)
Virus del Dengue/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas no Estructurales Virales/metabolismo , Dicroismo Circular , Virus del Dengue/crecimiento & desarrollo , Liposomas , Lípidos de la Membrana/química , Micelas , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Replicación Viral
2.
Biomol NMR Assign ; 9(2): 243-6, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25324217

RESUMEN

Hyperpolarization activated and cyclic nucleotide-gated (HCN) ion channels as well as cyclic nucleotide-gated (CNG) ion channels are essential for the regulation of cardiac cells, neuronal excitability, and signaling in sensory cells. Both classes are composed of four subunits. Each subunit comprises a transmembrane region, intracellular N- and C-termini, and a C-terminal cyclic nucleotide-binding domain (CNBD). Binding of cyclic nucleotides to the CNBD promotes opening of both CNG and HCN channels. In case of CNG channels, binding of cyclic nucleotides to the CNBD is sufficient to open the channel. In contrast, HCN channels open upon membrane hyperpolarization and their activity is modulated by binding of cyclic nucleotides shifting the activation potential to more positive values. Although several high-resolution structures of CNBDs from HCN and CNG channels are available, the gating mechanism for murine HCN2 channel, which leads to the opening of the channel pore, is still poorly understood. As part of a structural investigation, here, we report the complete backbone and side chain resonance assignments of the murine HCN2 CNBD with part of the C-linker.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Resonancia Magnética Nuclear Biomolecular , Nucleótidos Cíclicos/metabolismo , Animales , Ligandos , Ratones , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Espectroscopía de Protones por Resonancia Magnética
3.
PLoS One ; 9(1): e86482, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24466115

RESUMEN

BACKGROUND: Dengue virus (DENV) is a mosquito-transmitted positive single strand RNA virus belonging to the Flaviviridae family. DENV causes dengue fever, currently the world's fastest-spreading tropical disease. Severe forms of the disease like dengue hemorrhagic fever and dengue shock syndrome are life-threatening. There is no specific treatment and no anti-DENV vaccines. Our recent data suggests that the amino terminal cytoplasmic region of the dengue virus non-structural protein 4A (NS4A) comprising amino acid residues 1 to 48 forms an amphipathic helix in the presence of membranes. Its amphipathic character was shown to be essential for viral replication. NMR-based structure-function analysis of the NS4A amino terminal region depends on its milligram-scale production and labeling with NMR active isotopes. METHODOLOGY/PRINCIPAL FINDINGS: This report describes the optimization of a uniform procedure for the expression and purification of the wild type NS4A(1-48) peptide and a peptide derived from a replication-deficient mutant NS4A(1-48; L6E, M10E) with disrupted amphipathic nature. A codon-optimized, synthetic gene for NS4A(1-48) was expressed as a fusion with a GST-GB1 dual tag in E. coli. Tobacco etch virus (TEV) protease mediated cleavage generated NS4A(1-48) peptides without any artificial overhang. Using the described protocol up to 4 milligrams of the wild type or up to 5 milligrams of the mutant peptide were obtained from a one-liter culture. Isotopic labeling of the peptides was achieved and initial NMR spectra were recorded. CONCLUSIONS/SIGNIFICANCE: Small molecules targeting amphipathic helices in the related Hepatitis C virus were shown to inhibit viral replication, representing a new class of antiviral drugs. These findings highlight the need for an efficient procedure that provides large quantities of the amphipathic helix containing NS4A peptides. The double tag strategy presented in this manuscript answers these needs yielding amounts that are sufficient for comprehensive biophysical and structural studies, which might reveal new drug targets.


Asunto(s)
Virus del Dengue/fisiología , Mutación/genética , Fragmentos de Péptidos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Secuencia de Aminoácidos , Antivirales/farmacología , Secuencia de Bases , Western Blotting , Dengue/prevención & control , Dengue/virología , Endopeptidasas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Glutatión Transferasa/genética , Humanos , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/aislamiento & purificación , Proteínas Mutantes/metabolismo , Fragmentos de Péptidos/genética , Plásmidos/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Homología de Secuencia de Ácido Nucleico , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Ubiquitina/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
4.
Biol Chem ; 394(11): 1439-51, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24021595

RESUMEN

Cyclic nucleotide-binding domains (CNBDs) that are present in various channel proteins play crucial roles in signal amplification cascades. Although atomic resolution structures of some of those CNBDs are available, the detailed mechanism by which they confer cyclic nucleotide-binding to the ion channel pore remains poorly understood. In this review, we describe structural insights about cyclic nucleotide-binding-induced conformational changes in CNBDs and their potential coupling with channel gating.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Animales , Canales de Calcio/química , Canales de Calcio/metabolismo , AMP Cíclico/química , AMP Cíclico/metabolismo , Humanos , Ligandos , Mesorhizobium/química , Mesorhizobium/metabolismo , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Canales de Sodio/química , Canales de Sodio/metabolismo , Relación Estructura-Actividad
5.
Proc Natl Acad Sci U S A ; 108(15): 6121-6, 2011 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-21430265

RESUMEN

Cyclic nucleotide-sensitive ion channels, known as HCN and CNG channels, are activated by binding of ligands to a domain (CNBD) located on the cytoplasmic side of the channel. The underlying mechanisms are not well understood. To elucidate the gating mechanism, structures of both the ligand-free and -bound CNBD are required. Several crystal structures of the CNBD from HCN2 and a bacterial CNG channel (MloK1) have been solved. However, for HCN2, the cAMP-free and -bound state did not reveal substantial structural rearrangements. For MloK1, structural information for the cAMP-free state has only been gained from mutant CNBDs. Moreover, in the crystal, the CNBD molecules form an interface between dimers, proposed to be important for allosteric channel gating. Here, we have determined the solution structure by NMR spectroscopy of the cAMP-free wild-type CNBD of MloK1. A comparison of the solution structure of cAMP-free and -bound states reveals large conformational rearrangement on ligand binding. The two structures provide insights on a unique set of conformational events that accompany gating within the ligand-binding site.


Asunto(s)
Alphaproteobacteria/metabolismo , AMP Cíclico/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Cristalografía por Rayos X , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Mutación , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína
6.
Biomol NMR Assign ; 4(2): 147-50, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20449776

RESUMEN

Cyclic nucleotide-sensitive ion channels, known as HCN and CNG channels play crucial roles in neuronal excitability and signal transduction of sensory cells. These channels are activated by binding of cyclic nucleotides to their intracellular cyclic nucleotide-binding domain (CNBD). A comparison of the structures of wildtype ligand-free and ligand-bound CNBD is essential to elucidate the mechanism underlying nucleotide-dependent activation of CNBDs. We recently reported the solution structure of the Mesorhizobium loti K1 (MloK1) channel CNBD in complex with cAMP. We have now extended these studies and achieved nearly complete assignments of (1)H, (13)C and (15)N resonances of the nucleotide-free CNBD. A completely new assignment of the nucleotide-free wildtype CNBD was necessary due to the sizable chemical shift differences as compared to the cAMP bound CNBD and the slow exchange behaviour between both forms. Scattering of these chemical shift differences over the complete CNBD suggests that nucleotide binding induces significant overall conformational changes.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Resonancia Magnética Nuclear Biomolecular , Nucleótidos/metabolismo , Rhizobium/metabolismo , Estructura Terciaria de Proteína
7.
EMBO Rep ; 10(7): 729-35, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19465888

RESUMEN

Cyclic nucleotide-sensitive ion channels, known as HCN and CNG channels, are crucial in neuronal excitability and signal transduction of sensory cells. HCN and CNG channels are activated by binding of cyclic nucleotides to their intracellular cyclic nucleotide-binding domain (CNBD). However, the mechanism by which the binding of cyclic nucleotides opens these channels is not well understood. Here, we report the solution structure of the isolated CNBD of a cyclic nucleotide-sensitive K(+) channel from Mesorhizobium loti. The protein consists of a wide anti-parallel beta-roll topped by a helical bundle comprising five alpha-helices and a short 3(10)-helix. In contrast to the dimeric arrangement ('dimer-of-dimers') in the crystal structure, the solution structure clearly shows a monomeric fold. The monomeric structure of the CNBD supports the hypothesis that the CNBDs transmit the binding signal to the channel pore independently of each other.


Asunto(s)
Alphaproteobacteria/química , AMP Cíclico/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales de Potasio/química , Cristalografía por Rayos X , AMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Modelos Moleculares , Canales de Potasio/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...