Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 186(7): 1432-1447.e17, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37001503

RESUMEN

Cancer immunotherapies, including adoptive T cell transfer, can be ineffective because tumors evolve to display antigen-loss-variant clones. Therapies that activate multiple branches of the immune system may eliminate escape variants. Here, we show that melanoma-specific CD4+ T cell therapy in combination with OX40 co-stimulation or CTLA-4 blockade can eradicate melanomas containing antigen escape variants. As expected, early on-target recognition of melanoma antigens by tumor-specific CD4+ T cells was required. Surprisingly, complete tumor eradication was dependent on neutrophils and partly dependent on inducible nitric oxide synthase. In support of these findings, extensive neutrophil activation was observed in mouse tumors and in biopsies of melanoma patients treated with immune checkpoint blockade. Transcriptomic and flow cytometry analyses revealed a distinct anti-tumorigenic neutrophil subset present in treated mice. Our findings uncover an interplay between T cells mediating the initial anti-tumor immune response and neutrophils mediating the destruction of tumor antigen loss variants.


Asunto(s)
Melanoma , Linfocitos T , Ratones , Animales , Linfocitos T/patología , Neutrófilos/patología , Deriva y Cambio Antigénico , Inmunoterapia , Antígeno CTLA-4
2.
Sci Transl Med ; 14(649): eaba4380, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35704596

RESUMEN

The majority of JAK2V617F-negative myeloproliferative neoplasms (MPNs) have disease-initiating frameshift mutations in calreticulin (CALR), resulting in a common carboxyl-terminal mutant fragment (CALRMUT), representing an attractive source of neoantigens for cancer vaccines. However, studies have shown that CALRMUT-specific T cells are rare in patients with CALRMUT MPN for unknown reasons. We examined class I major histocompatibility complex (MHC-I) allele frequencies in patients with CALRMUT MPN from two independent cohorts. We observed that MHC-I alleles that present CALRMUT neoepitopes with high affinity are underrepresented in patients with CALRMUT MPN. We speculated that this was due to an increased chance of immune-mediated tumor rejection by individuals expressing one of these MHC-I alleles such that the disease never clinically manifested. As a consequence of this MHC-I allele restriction, we reasoned that patients with CALRMUT MPN would not efficiently respond to a CALRMUT fragment cancer vaccine but would when immunized with a modified CALRMUT heteroclitic peptide vaccine approach. We found that heteroclitic CALRMUT peptides specifically designed for the MHC-I alleles of patients with CALRMUT MPN efficiently elicited a CALRMUT cross-reactive CD8+ T cell response in human peripheral blood samples but not to the matched weakly immunogenic CALRMUT native peptides. We corroborated this effect in vivo in mice and observed that C57BL/6J mice can mount a CD8+ T cell response to the CALRMUT fragment upon immunization with a CALRMUT heteroclitic, but not native, peptide. Together, our data emphasize the therapeutic potential of heteroclitic peptide-based cancer vaccines in patients with CALRMUT MPN.


Asunto(s)
Vacunas contra el Cáncer , Trastornos Mieloproliferativos , Neoplasias , Animales , Calreticulina/genética , Humanos , Janus Quinasa 2/genética , Complejo Mayor de Histocompatibilidad , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Trastornos Mieloproliferativos/genética , Neoplasias/genética , Péptidos , Vacunas de Subunidad
3.
J Exp Med ; 219(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35604411

RESUMEN

Transcription factors ThPOK and Runx3 regulate the differentiation of "helper" CD4+ and "cytotoxic" CD8+ T cell lineages respectively, inducing single positive (SP) T cells that enter the periphery with the expression of either the CD4 or CD8 co-receptor. Despite the expectation that these cell fates are mutually exclusive and that mature CD4+CD8+ double positive (DP) T cells are present in healthy individuals and augmented in the context of disease, yet their molecular features and pathophysiologic role are disputed. Here, we show DP T cells in murine and human tumors as a heterogenous population originating from SP T cells which re-express the opposite co-receptor and acquire features of the opposite cell type's phenotype and function following TCR stimulation. We identified distinct clonally expanded DP T cells in human melanoma and lung cancer by scRNA sequencing and demonstrated their tumor reactivity in cytotoxicity assays. Our findings indicate that antigen stimulation induces SP T cells to differentiate into DP T cell subsets gaining in polyfunctional characteristics.


Asunto(s)
Linfocitos T CD4-Positivos , Melanoma , Animales , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Linfocitos T CD8-positivos , Diferenciación Celular , Linaje de la Célula/genética , Melanoma/metabolismo , Ratones , Subgrupos de Linfocitos T
4.
Cancer Cell ; 39(7): 973-988.e9, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34115989

RESUMEN

Immune checkpoint blockade (ICB) has been a remarkable clinical advance for cancer; however, the majority of patients do not respond to ICB therapy. We show that metastatic disease in the pleural and peritoneal cavities is associated with poor clinical outcomes after ICB therapy. Cavity-resident macrophages express high levels of Tim-4, a receptor for phosphatidylserine (PS), and this is associated with reduced numbers of CD8+ T cells with tumor-reactive features in pleural effusions and peritoneal ascites from patients with cancer. We mechanistically demonstrate that viable and cytotoxic anti-tumor CD8+ T cells upregulate PS and this renders them susceptible to sequestration away from tumor targets and proliferation suppression by Tim-4+ macrophages. Tim-4 blockade abrogates this sequestration and proliferation suppression and enhances anti-tumor efficacy in models of anti-PD-1 therapy and adoptive T cell therapy in mice. Thus, Tim-4+ cavity-resident macrophages limit the efficacy of immunotherapies in these microenvironments.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Neoplasias del Colon/inmunología , Regulación Neoplásica de la Expresión Génica , Macrófagos/inmunología , Proteínas de la Membrana/metabolismo , Microambiente Tumoral , Animales , Apoptosis , Proliferación Celular , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Femenino , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pronóstico , Estudios Retrospectivos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Cell Rep ; 34(2): 108620, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33440157

RESUMEN

Phosphatidylserine (PS) is exposed on the surface of apoptotic cells and is known to promote immunosuppressive signals in the tumor microenvironment (TME). Antibodies that block PS interaction with its receptors have been shown to repolarize the TME into a proinflammatory state. Radiation therapy (RT) is an effective focal treatment of isolated solid tumors but is less effective at controlling metastatic cancers. We found that tumor-directed RT caused an increase in expression of PS on the surface of viable immune infiltrates in mouse B16 melanoma. We hypothesize that PS expression on immune cells may provide negative feedback to immune cells in the TME. Treatment with an antibody that targets PS (mch1N11) enhanced the anti-tumor efficacy of tumor-directed RT and improved overall survival. This combination led to an increase in proinflammatory tumor-associated macrophages. The addition of anti-PD-1 to RT and mch1N11 led to even greater anti-tumor efficacy and overall survival. We found increased PS expression on several immune subsets in the blood of patients with metastatic melanoma after receiving tumor-directed RT. These findings highlight the potential of combining PS targeting with RT and PD-1 pathway blockade to improve outcomes in patients with advanced-stage cancers.


Asunto(s)
Melanoma/radioterapia , Fosfatidilserinas/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Melanoma/patología , Ratones , Microambiente Tumoral
6.
Nature ; 543(7645): 428-432, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28273064

RESUMEN

Although the main focus of immuno-oncology has been manipulating the adaptive immune system, harnessing both the innate and adaptive arms of the immune system might produce superior tumour reduction and elimination. Tumour-associated macrophages often have net pro-tumour effects, but their embedded location and their untapped potential provide impetus to discover strategies to turn them against tumours. Strategies that deplete (anti-CSF-1 antibodies and CSF-1R inhibition) or stimulate (agonistic anti-CD40 or inhibitory anti-CD47 antibodies) tumour-associated macrophages have had some success. We hypothesized that pharmacologic modulation of macrophage phenotype could produce an anti-tumour effect. We previously reported that a first-in-class selective class IIa histone deacetylase (HDAC) inhibitor, TMP195, influenced human monocyte responses to the colony-stimulating factors CSF-1 and CSF-2 in vitro. Here, we utilize a macrophage-dependent autochthonous mouse model of breast cancer to demonstrate that in vivo TMP195 treatment alters the tumour microenvironment and reduces tumour burden and pulmonary metastases by modulating macrophage phenotypes. TMP195 induces the recruitment and differentiation of highly phagocytic and stimulatory macrophages within tumours. Furthermore, combining TMP195 with chemotherapy regimens or T-cell checkpoint blockade in this model significantly enhances the durability of tumour reduction. These data introduce class IIa HDAC inhibition as a means to harness the anti-tumour potential of macrophages to enhance cancer therapy.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/clasificación , Inhibidores de Histona Desacetilasas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/secundario , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Animales , Benzamidas/farmacología , Benzamidas/uso terapéutico , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/inmunología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Femenino , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Neoplasias Pulmonares/inmunología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/citología , Ratones , Oxadiazoles/farmacología , Oxadiazoles/uso terapéutico , Fagocitosis/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología
7.
Mol Cell Endocrinol ; 419: 185-97, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26525414

RESUMEN

The thyroid hormone receptor α1 (TRα1) is a nuclear receptor for thyroid hormone that shuttles rapidly between the nucleus and cytoplasm. Our prior studies showed that nuclear import of TRα1 is directed by two nuclear localization signals, one in the N-terminal A/B domain and the other in the hinge domain. Here, we showed using in vitro nuclear import assays that TRα1 nuclear localization is temperature and energy-dependent and can be reconstituted by the addition of cytosol. In HeLa cells expressing green fluorescent protein (GFP)-tagged TRα1, knockdown of importin 7, importin ß1 and importin α1 by RNA interference, or treatment with an importin ß1-specific inhibitor, significantly reduced nuclear localization of TRα1, while knockdown of other importins had no effect. Coimmunoprecipitation assays confirmed that TRα1 interacts with importin 7, as well as importin ß1 and the adapter importin α1, suggesting that TRα1 trafficking into the nucleus is mediated by two distinct pathways.


Asunto(s)
Núcleo Celular/metabolismo , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores alfa de Hormona Tiroidea/metabolismo , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo , Células HeLa , Humanos , Transporte de Proteínas , Quinazolinas/farmacología , Transducción de Señal/efectos de los fármacos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...