Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Methods ; 19(1): 108, 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37833725

RESUMEN

Remote sensing of vegetation by spectroscopy is increasingly used to characterize trait distributions in plant communities. How leaves interact with electromagnetic radiation is determined by their structure and contents of pigments, water, and abundant dry matter constituents like lignins, phenolics, and proteins. High-resolution ("hyperspectral") spectroscopy can characterize trait variation at finer scales, and may help to reveal underlying genetic variation-information important for assessing the potential of populations to adapt to global change. Here, we use a set of 360 inbred genotypes of the wild coyote tobacco Nicotiana attenuata: wild accessions, recombinant inbred lines (RILs), and transgenic lines (TLs) with targeted changes to gene expression, to dissect genetic versus non-genetic influences on variation in leaf spectra across three experiments. We calculated leaf reflectance from hand-held field spectroradiometer measurements covering visible to short-wave infrared wavelengths of electromagnetic radiation (400-2500 nm) using a standard radiation source and backgrounds, resulting in a small and quantifiable measurement uncertainty. Plants were grown in more controlled (glasshouse) or more natural (field) environments, and leaves were measured both on- and off-plant with the measurement set-up thus also in more to less controlled environmental conditions. Entire spectra varied across genotypes and environments. We found that the greatest variance in leaf reflectance was explained by between-experiment and non-genetic between-sample differences, with subtler and more specific variation distinguishing groups of genotypes. The visible spectral region was most variable, distinguishing experimental settings as well as groups of genotypes within experiments, whereas parts of the short-wave infrared may vary more specifically with genotype. Overall, more genetically variable plant populations also showed more varied leaf spectra. We highlight key considerations for the application of field spectroscopy to assess genetic variation in plant populations.

2.
Sci Total Environ ; 867: 161365, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634788

RESUMEN

Aquatic and terrestrial ecosystems are tightly connected via spatial flows of organisms and resources. Such land-water linkages integrate biodiversity across ecosystems and suggest a spatial association of aquatic and terrestrial biodiversity. However, knowledge about the extent of this spatial association is limited. By combining satellite remote sensing (RS) and environmental DNA (eDNA) extraction from river water across a 740-km2 mountainous catchment, we identify a characteristic spatial land-water fingerprint. Specifically, we find a spatial association of riverine eDNA diversity with RS spectral diversity of terrestrial ecosystems upstream, peaking at a 400 m distance yet still detectable up to a 2.0 km radius. Our findings show that biodiversity patterns in rivers can be linked to the functional diversity of surrounding terrestrial ecosystems and provide a dominant scale at which these linkages are strongest. Such spatially explicit information is necessary for a functional understanding of land-water linkages.


Asunto(s)
ADN Ambiental , Ecosistema , Tecnología de Sensores Remotos , Agua , Biodiversidad , Ríos , Monitoreo del Ambiente
3.
Tree Genet Genomes ; 19(1): 3, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36532711

RESUMEN

Genetic diversity influences the evolutionary potential of forest trees under changing environmental conditions, thus indirectly the ecosystem services that forests provide. European beech (Fagus sylvatica L.) is a dominant European forest tree species that increasingly suffers from climate change-related die-back. Here, we conducted a systematic literature review of neutral genetic diversity in European beech and created a meta-data set of expected heterozygosity (He) from all past studies providing nuclear microsatellite data. We propose a novel approach, based on population genetic theory and a min-max scaling to make past studies comparable. Using a new microsatellite data set with unprecedented geographic coverage and various re-sampling schemes to mimic common sampling biases, we show the potential and limitations of the scaling approach. The scaled meta-dataset reveals the expected trend of decreasing genetic diversity from glacial refugia across the species range and also supports the hypothesis that different lineages met and admixed north of the European mountain ranges. As a result, we present a map of genetic diversity across the range of European beech which could help to identify seed source populations harboring greater diversity and guide sampling strategies for future genome-wide and functional investigations of genetic variation. Our approach illustrates how to combine information from several nuclear microsatellite data sets to describe patterns of genetic diversity extending beyond the geographic scale or mean number of loci used in each individual study, and thus is a proof-of-concept for synthesizing knowledge from existing studies also in other species. Supplementary Information: The online version contains supplementary material available at 10.1007/s11295-022-01577-4.

4.
J Geophys Res Biogeosci ; 127(9): e2022JG007026, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36247363

RESUMEN

Biodiversity monitoring is an almost inconceivable challenge at the scale of the entire Earth. The current (and soon to be flown) generation of spaceborne and airborne optical sensors (i.e., imaging spectrometers) can collect detailed information at unprecedented spatial, temporal, and spectral resolutions. These new data streams are preceded by a revolution in modeling and analytics that can utilize the richness of these datasets to measure a wide range of plant traits, community composition, and ecosystem functions. At the heart of this framework for monitoring plant biodiversity is the idea of remotely identifying species by making use of the 'spectral species' concept. In theory, the spectral species concept can be defined as a species characterized by a unique spectral signature and thus remotely detectable within pixel units of a spectral image. In reality, depending on spatial resolution, pixels may contain several species which renders species-specific assignment of spectral information more challenging. The aim of this paper is to review the spectral species concept and relate it to underlying ecological principles, while also discussing the complexities, challenges and opportunities to apply this concept given current and future scientific advances in remote sensing.

5.
Nat Ecol Evol ; 6(1): 36-50, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34949824

RESUMEN

Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land-climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles.


Asunto(s)
Ecosistema , Suelo , Fenotipo , Hojas de la Planta , Plantas
6.
Sci Data ; 8(1): 295, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750391

RESUMEN

Since the opening of Earth Observation (EO) archives (USGS/NASA Landsat and EC/ESA Sentinels), large collections of EO data are freely available, offering scientists new possibilities to better understand and quantify environmental changes. Fully exploiting these satellite EO data will require new approaches for their acquisition, management, distribution, and analysis. Given rapid environmental changes and the emergence of big data, innovative solutions are needed to support policy frameworks and related actions toward sustainable development. Here we present the Swiss Data Cube (SDC), unleashing the information power of Big Earth Data for monitoring the environment, providing Analysis Ready Data over the geographic extent of Switzerland since 1984, which is updated on a daily basis. Based on a cloud-computing platform allowing to access, visualize and analyse optical (Sentinel-2; Landsat 5, 7, 8) and radar (Sentinel-1) imagery, the SDC minimizes the time and knowledge required for environmental analyses, by offering consistent calibrated and spatially co-registered satellite observations. SDC derived analysis ready data supports generation of environmental information, allowing to inform a variety of environmental policies with unprecedented timeliness and quality.

9.
Ecol Evol ; 11(16): 10834-10867, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34429885

RESUMEN

Trait-based ecology holds the promise to explain how plant communities work, for example, how functional diversity may support community productivity. However, so far it has been difficult to combine field-based approaches assessing traits at the level of plant individuals with limited spatial coverage and approaches using remote sensing (RS) with complete spatial coverage but assessing traits at the level of vegetation pixels rather than individuals. By delineating all individual-tree crowns within a temperate forest site and then assigning RS-derived trait measures to these trees, we combine the two approaches, allowing us to use general linear models to estimate the influence of taxonomic or environmental variation on between- and within-species variation across contiguous space.We used airborne imaging spectroscopy and laser scanning to collect individual-tree RS data from a mixed conifer-angiosperm forest on a mountain slope extending over 5.5 ha and covering large environmental gradients in elevation as well as light and soil conditions. We derived three biochemical (leaf chlorophyll, carotenoids, and water content) and three architectural traits (plant area index, foliage-height diversity, and canopy height), which had previously been used to characterize plant function, from the RS data. We then quantified the contributions of taxonomic and environmental variation and their interaction to trait variation and partitioned the remaining within-species trait variation into smaller-scale spatial and residual variation. We also investigated the correlation between functional trait and phylogenetic distances at the between-species level. The forest consisted of 13 tree species of which eight occurred in sufficient abundance for quantitative analysis.On average, taxonomic variation between species accounted for more than 15% of trait variation in biochemical traits but only around 5% (still highly significant) in architectural traits. Biochemical trait distances among species also showed a stronger correlation with phylogenetic distances than did architectural trait distances. Light and soil conditions together with elevation explained slightly more variation than taxonomy across all traits, but in particular increased plant area index (light) and reduced canopy height (elevation). Except for foliage-height diversity, all traits were affected by significant interactions between taxonomic and environmental variation, the different responses of the eight species to the within-site environmental gradients potentially contributing to the coexistence of the eight abundant species.We conclude that with high-resolution RS data it is possible to delineate individual-tree crowns within a forest and thus assess functional traits derived from RS data at individual level. With this precondition fulfilled, it is then possible to apply tools commonly used in field-based trait ecology to partition trait variation among individuals into taxonomic and potentially even genetic variation, environmental variation, and interactions between the two. The method proposed here presents a promising way of assessing individual-based trait information with complete spatial coverage and thus allowing analysis of functional diversity at different scales. This information can help to better understand processes shaping community structure, productivity, and stability of forests.

11.
Methods Ecol Evol ; 12(6): 1093-1102, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34262682

RESUMEN

Ecosystem heterogeneity has been widely recognized as a key ecological indicator of several ecological functions, diversity patterns and change, metapopulation dynamics, population connectivity or gene flow.In this paper, we present a new R package-rasterdiv-to calculate heterogeneity indices based on remotely sensed data. We also provide an ecological application at the landscape scale and demonstrate its power in revealing potentially hidden heterogeneity patterns.The rasterdiv package allows calculating multiple indices, robustly rooted in Information Theory, and based on reproducible open-source algorithms.

13.
Nat Ecol Evol ; 5(7): 896-906, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33986541

RESUMEN

Monitoring global biodiversity from space through remotely sensing geospatial patterns has high potential to add to our knowledge acquired by field observation. Although a framework of essential biodiversity variables (EBVs) is emerging for monitoring biodiversity, its poor alignment with remote sensing products hinders interpolation between field observations. This study compiles a comprehensive, prioritized list of remote sensing biodiversity products that can further improve the monitoring of geospatial biodiversity patterns, enhancing the EBV framework and its applicability. The ecosystem structure and ecosystem function EBV classes, which capture the biological effects of disturbance as well as habitat structure, are shown by an expert review process to be the most relevant, feasible, accurate and mature for direct monitoring of biodiversity from satellites. Biodiversity products that require satellite remote sensing of a finer resolution that is still under development are given lower priority (for example, for the EBV class species traits). Some EBVs are not directly measurable by remote sensing from space, specifically the EBV class genetic composition. Linking remote sensing products to EBVs will accelerate product generation, improving reporting on the state of biodiversity from local to global scales.


Asunto(s)
Benchmarking , Ecosistema , Biodiversidad
14.
Data Brief ; 35: 106820, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33659587

RESUMEN

This article describes a dataset of multiangular scattering properties of small trees (height = 0.38-0.7 m) at visible, near-infrared, and shortwave-infrared wavelengths (350-2500 nm), and provides supporting auxiliary data that comprise leaf, needle, and bark spectra, and structural characteristics of the trees. Multiangular spectra were measured for 18 trees belonging to three common European tree species: Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) H. Karst), and sessile oak (Quercus petraea (Matt.) Liebl.). The measurements were performed in 47 different view angles across a hemisphere, using a laboratory goniometer and a non-imaging spectrometer. Leaf and needle spectra were measured for each tree, using a non-imaging spectrometer coupled to an integrating sphere. Bark spectra were measured for one sample tree per species. In addition, leaf and needle fresh mass, surface area of leaves, needles, and woody parts, silhouette area, and spherically averaged silhouette to total area ratio (STAR) for each tree were measured or derived from the measurements. The data are useful for modeling the shortwave reflectance characteristics of small trees and potentially forests, and thus benefit climate modeling or interpretation of remote sensing data.

15.
ISPRS J Photogramm Remote Sens ; 169: 57-72, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33343084

RESUMEN

Physically-based methods in remote sensing provide benefits over statistical approaches in monitoring biophysical characteristics of vegetation. However, physically-based models still demand large computational resources and often require rather detailed informative priors on various aspects of vegetation and atmospheric status. Spectral invariants and photon recollision probability theories provide a solid theoretical framework for developing relatively simple models of forest canopy reflectance. Empirical validation of these theories is, however, scarce. Here we present results of a first empirical validation of a model based on photon recollision probability at the level of individual trees. Multiangular spectra of pine, spruce, and oak tree seedlings (height = 0.38-0.7 m) were measured using a goniometer, and tree hemispherical reflectance was derived from those measurements. We evaluated the agreement between modeled and measured tree reflectance. The model predicted the spectral signatures of the tree seedlings in the wavelength range between 400 and 2300 nm well, with wavelength-specific bias between -0.048 and 0.034 in reflectance units. In relative terms, the model errors were the smallest in the near-infrared (relative RMSE up to 4%, 7%, and 4% for pine, spruce, and oak seedlings, respectively) and the largest in the visible wavelength region (relative RMSE up to 34%, 20%, and 60%). The errors in the visible region could be partly attributed to wavelength-dependent directional scattering properties of the leaves. Including woody parts of tree seedlings in the model improved the results by reducing the relative RMSE by up to 10% depending on species and wavelength. Spectrally invariant model parameters, i.e. total and directional escape probabilities, depended on spherically averaged silhouette to total area ratio (STAR) of the tree seedlings. Overall, the modeled and measured tree reflectance mainly agreed within measurement uncertainties, but the results indicate that the assumption of isotropic scattering by the leaves can result in large errors in the visible wavelength region for some tree species. Our results help increasing the confidence when using photon recollision probability and spectral invariants -based models to interpret satellite images, but they also lead to an improved understanding of the assumptions and limitations of these theories.

16.
Ecol Evol ; 10(14): 7419-7430, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32760538

RESUMEN

The growing pace of environmental change has increased the need for large-scale monitoring of biodiversity. Declining intraspecific genetic variation is likely a critical factor in biodiversity loss, but is especially difficult to monitor: assessments of genetic variation are commonly based on measuring allele pools, which requires sampling of individuals and extensive sample processing, limiting spatial coverage. Alternatively, imaging spectroscopy data from remote platforms may hold the potential to reveal genetic structure of populations. In this study, we investigated how differences detected in an airborne imaging spectroscopy time series correspond to genetic variation within a population of Fagus sylvatica under natural conditions.We used multi-annual APEX (Airborne Prism Experiment) imaging spectrometer data from a temperate forest located in the Swiss midlands (Laegern, 47°28'N, 8°21'E), along with microsatellite data from F. sylvatica individuals collected at the site. We identified variation in foliar reflectance independent of annual and seasonal changes which we hypothesize is more likely to correspond to stable genetic differences. We established a direct connection between the spectroscopy and genetics data by using partial least squares (PLS) regression to predict the probability of belonging to a genetic cluster from spectral data.We achieved the best genetic structure prediction by using derivatives of reflectance and a subset of wavebands rather than full-analyzed spectra. Our model indicates that spectral regions related to leaf water content, phenols, pigments, and wax composition contribute most to the ability of this approach to predict genetic structure of F. sylvatica population in natural conditions.This study advances the use of airborne imaging spectroscopy to assess tree genetic diversity at canopy level under natural conditions, which could overcome current spatiotemporal limitations on monitoring, understanding, and preventing genetic biodiversity loss imposed by requirements for extensive in situ sampling.

17.
New Phytol ; 228(2): 485-493, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32579721

RESUMEN

Leaf reflectance spectra have been increasingly used to assess plant diversity. However, we do not yet understand how spectra vary across the tree of life or how the evolution of leaf traits affects the differentiation of spectra among species and lineages. Here we describe a framework that integrates spectra with phylogenies and apply it to a global dataset of over 16 000 leaf-level spectra (400-2400 nm) for 544 seed plant species. We test for phylogenetic signal in spectra, evaluate their ability to classify lineages, and characterize their evolutionary dynamics. We show that phylogenetic signal is present in leaf spectra but that the spectral regions most strongly associated with the phylogeny vary among lineages. Despite among-lineage heterogeneity, broad plant groups, orders, and families can be identified from reflectance spectra. Evolutionary models also reveal that different spectral regions evolve at different rates and under different constraint levels, mirroring the evolution of their underlying traits. Leaf spectra capture the phylogenetic history of seed plants and the evolutionary dynamics of leaf chemistry and structure. Consequently, spectra have the potential to provide breakthrough assessments of leaf evolution and plant phylogenetic diversity at global scales.


Asunto(s)
Hojas de la Planta , Semillas , Filogenia , Plantas
18.
Sci Total Environ ; 725: 138380, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32298886

RESUMEN

Snow accumulation and melt have multiple impacts on Land Surface Phenology (LSP) and greenness in Alpine grasslands. Our understanding of these impacts and their interactions with meteorological factors are still limited. In this study, we investigate this topic by analyzing LSP dynamics together with potential drivers, using satellite imagery and other data sources. LSP (start and end of season) and greenness metrics were extracted from time series of vegetation and leaf area index. As explanatory variables we used snow accumulation, snow cover melt date and meteorological factors. We tested for inter-annual co-variation of LSP and greenness metrics with seasonal snow and meteorological metrics across elevations and for four sub-regions of natural grasslands in the Swiss Alps over the period 2003-2014. We found strong positive correlations of snow cover melt date and snow accumulation with the start of season, especially at higher elevation. Autumn temperature was found to be important at the end of season below 2000 m above sea level (m asl), while autumn precipitation was relevant above 2000 m asl, indicating climatic growth limiting factors to be elevation dependent. The effects of snow and meteorological factors on greenness revealed that this metric tends to be influenced by temperatures at high elevations, and by snow melt date at low elevations. Given the high sensitivity of alpine grassland ecosystems, these results suggest that alpine grasslands may be particularly affected by future changes in seasonal snow, to varying degree depending on elevation.

19.
Ecol Appl ; 29(4): e01901, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30980439

RESUMEN

Understanding the drivers of ecosystem change and their effects on ecosystem services are essential for management decisions and verification of progress towards national and international sustainability policies (e.g., Aichi Biodiversity Targets, Sustainable Development Goals). We aim to disentangle spatially the effect of climatological and non-climatological drivers on ecosystem service supply and trends. Therefore, we explored time series of three ecosystem services in Switzerland between 2004 and 2014: carbon dioxide regulation, soil erosion prevention, and air quality regulation. We applied additive models to describe the spatial variation attributed to climatological (i.e., temperature, precipitation and relative sunshine duration) and non-climatological drivers (i.e., random effects representing other spatially structured processes) that may affect ecosystem service change. Obtained results indicated strong influences of climatological drivers on ecosystem service trends in Switzerland. We identified equal contributions of all three climatological drivers on trends of carbon dioxide regulation and soil erosion prevention, while air quality regulation was more strongly influenced by temperature. Additionally, our results showed that climatological and non-climatological drivers affected ecosystem services both negatively and positively, depending on the regions (in particular lower and higher altitudinal areas), drivers, and services assessed. Our findings highlight stronger effects of climatological compared to non-climatological drivers on ecosystem service change in Switzerland. Furthermore, drivers of ecosystem change display a spatial heterogeneity in their influence on ecosystem service trends. We propose an approach building on an additive model to disentangle the effect of climatological and non-climatological drivers on ecosystem service trends. Such analyses should be extended in the future to ecosystem service flow and demand to complete ecosystem service assessments and to demonstrate and communicate more clearly the benefits of ecosystem services for human well-being.


Asunto(s)
Ecosistema , Suelo , Biodiversidad , Dióxido de Carbono , Conservación de los Recursos Naturales , Humanos , Suiza
20.
Sci Total Environ ; 665: 678-689, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30776640

RESUMEN

An improved understanding of increased human influence on ecosystems is needed for predicting ecosystem processes and sustainable ecosystem management. We studied spatial variation of human influence on grassland ecosystems at two scales across the Qinghai-Tibetan Plateau (QTP), where increased human activities may have led to ecosystem degradation. At the 10 km scale, we mapped human-influenced spatial patterns based on a hypothesis that spatial patterns of biomass that could not be attributed to environmental variables were likely correlated to human activities. In part this hypothesis could be supported via a positive correlation between biomass unexplained by environmental variables and livestock density. At the 500 m scale, using distance to settlements within a radius of 8 km as a proxy of human-influence intensity, we found both negatively human-influenced areas where biomass decreased closer to settlements (regions with higher livestock density) and positively human-influenced areas where biomass increased closer to settlements (regions with lower livestock density). These results suggest complex relationships between livestock grazing and biomass, varying between spatial scales and regions. Grazing may boost biomass production across the whole QTP at the 10 km scale. However, overgrazing may reduce it near settlements at the 500 m scale. Our approach of mapping and understanding human influence on ecosystems at different scales could guide pasture management to protect grassland in vulnerable regions on the QTP and beyond.


Asunto(s)
Biomasa , Monitoreo del Ambiente , Pradera , Actividades Humanas , Análisis Espacial , Tibet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA