Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
PLoS Comput Biol ; 20(2): e1011267, 2024 Feb.
Article En | MEDLINE | ID: mdl-38394339

Investigating and modelling the functionality of human neurons remains challenging due to the technical limitations, resulting in scarce and incomplete 3D anatomical reconstructions. Here we used a morphological modelling approach based on optimal wiring to repair the parts of a dendritic morphology that were lost due to incomplete tissue samples. In Drosophila, where dendritic regrowth has been studied experimentally using laser ablation, we found that modelling the regrowth reproduced a bimodal distribution between regeneration of cut branches and invasion by neighbouring branches. Interestingly, our repair model followed growth rules similar to those for the generation of a new dendritic tree. To generalise the repair algorithm from Drosophila to mammalian neurons, we artificially sectioned reconstructed dendrites from mouse and human hippocampal pyramidal cell morphologies, and showed that the regrown dendrites were morphologically similar to the original ones. Furthermore, we were able to restore their electrophysiological functionality, as evidenced by the recovery of their firing behaviour. Importantly, we show that such repairs also apply to other neuron types including hippocampal granule cells and cerebellar Purkinje cells. We then extrapolated the repair to incomplete human CA1 pyramidal neurons, where the anatomical boundaries of the particular brain areas innervated by the neurons in question were known. Interestingly, the repair of incomplete human dendrites helped to simulate the recently observed increased synaptic thresholds for dendritic NMDA spikes in human versus mouse dendrites. To make the repair tool available to the neuroscience community, we have developed an intuitive and simple graphical user interface (GUI), which is available in the TREES toolbox (www.treestoolbox.org).


Dendrites , Neurons , Humans , Mice , Animals , Dendrites/physiology , Neurons/physiology , Pyramidal Cells/physiology , Hippocampus/physiology , Drosophila , Mammals
2.
Brain Commun ; 5(1): fcad005, 2023.
Article En | MEDLINE | ID: mdl-36744011

Microtubule stabilization through epothilones is a promising preclinical therapy for functional recovery following spinal cord injury that stimulates axon regeneration, reduces growth-inhibitory molecule deposition and promotes functional improvements. Rehabilitation therapy is the only clinically validated approach to promote functional improvements following spinal cord injury. However, whether microtubule stabilization can augment the beneficial effects of rehabilitation therapy or act in concert with it to further promote repair remains unknown. Here, we investigated the pharmacokinetic, histological and functional efficacies of epothilone D, epothilone B and ixabepilone alone or in combination with rehabilitation following a moderate contusive spinal cord injury. Pharmacokinetic analysis revealed that ixabepilone only weakly crossed the blood-brain barrier and was subsequently excluded from further investigations. In contrast, epothilones B and D rapidly distributed to CNS compartments displaying similar profiles after either subcutaneous or intraperitoneal injections. Following injury and subcutaneous administration of epothilone B or D, rats were subjected to 7 weeks of sequential bipedal and quadrupedal training. For all outcome measures, epothilone B was efficacious compared with epothilone D. Specifically, epothilone B decreased fibrotic scaring which was associated with a retention of fibronectin localized to perivascular cells in sections distal to the lesion. This corresponded to a decreased number of cells present within the intralesional space, resulting in less axons within the lesion. Instead, epothilone B increased serotonergic fibre regeneration and vesicular glutamate transporter 1 expression caudal to the lesion, which was not affected by rehabilitation. Multiparametric behavioural analyses consisting of open-field locomotor scoring, horizontal ladder, catwalk gait analysis and hindlimb kinematics revealed that rehabilitation and epothilone B both improved several aspects of locomotion. Specifically, rehabilitation improved open-field locomotor and ladder scores, as well as improving the gait parameters of limb coupling, limb support, stride length and limb speed; epothilone B improved these same gait parameters but also hindlimb kinematic profiles. Functional improvements by epothilone B and rehabilitation acted complementarily on gait parameters leading to an enhanced recovery in the combination group. As a result, principal component analysis of gait showed the greatest improvement in the epothilone B plus rehabilitation group. Thus, these results support the combination of epothilone B with rehabilitation in a clinical setting.

3.
Neuron ; 110(1): 51-69.e7, 2022 01 05.
Article En | MEDLINE | ID: mdl-34706221

Axons in the adult mammalian central nervous system fail to regenerate after spinal cord injury. Neurons lose their capacity to regenerate during development, but the intracellular processes underlying this loss are unclear. We found that critical components of the presynaptic active zone prevent axon regeneration in adult mice. Transcriptomic analysis combined with live-cell imaging revealed that adult primary sensory neurons downregulate molecular constituents of the synapse as they acquire the ability to rapidly grow their axons. Pharmacogenetic reduction of neuronal excitability stimulated axon regeneration after adult spinal cord injury. Genetic gain- and loss-of-function experiments uncovered that essential synaptic vesicle priming proteins of the presynaptic active zone, but not clostridial-toxin-sensitive VAMP-family SNARE proteins, inhibit axon regeneration. Systemic administration of Baclofen reduced voltage-dependent Ca2+ influx in primary sensory neurons and promoted their regeneration after spinal cord injury. These findings indicate that functional presynaptic active zones constitute a major barrier to axon regeneration.


Axons , Spinal Cord Injuries , Animals , Axons/metabolism , Central Nervous System/metabolism , Mammals , Mice , Nerve Regeneration/physiology , Neurons/metabolism , Spinal Cord Injuries/metabolism
4.
Cell Rep ; 32(3): 107907, 2020 07 21.
Article En | MEDLINE | ID: mdl-32698008

During development of the central nervous system (CNS), neurons polarize and rapidly extend their axons to assemble neuronal circuits. The growth cone leads the axon to its target and drives axon growth. Here, we explored the mechanisms underlying axon growth in three dimensions. Live in situ imaging and super-resolution microscopy combined with pharmacological and molecular manipulations as well as biophysical force measurements revealed that growth cones extend CNS axons independent of pulling forces on their substrates and without the need for adhesions in three-dimensional (3D) environments. In 3D, microtubules grow unrestrained from the actomyosin cytoskeleton into the growth cone leading edge to enable rapid axon extension. Axons extend and polarize even in adhesion-inert matrices. Thus, CNS neurons use amoeboid mechanisms to drive axon growth. Together with our understanding that adult CNS axons regenerate by reactivating developmental processes, our findings illuminate how cytoskeletal manipulations enable axon regeneration in the adult CNS.


Axons/metabolism , Central Nervous System/metabolism , Actins/metabolism , Actomyosin/metabolism , Animals , Cell Adhesion , Cell Polarity , Collagen/metabolism , Fibroblasts/metabolism , Growth Cones/metabolism , Hippocampus/embryology , Mice, Inbred C57BL , Microtubules/metabolism , Neuronal Outgrowth , Polymerization
5.
Neuron ; 103(6): 1073-1085.e6, 2019 09 25.
Article En | MEDLINE | ID: mdl-31400829

Injured axons fail to regenerate in the adult CNS, which contrasts with their vigorous growth during embryonic development. We explored the potential of re-initiating axon extension after injury by reactivating the molecular mechanisms that drive morphogenetic transformation of neurons during development. Genetic loss- and gain-of-function experiments followed by time-lapse microscopy, in vivo imaging, and whole-mount analysis show that axon regeneration is fueled by elevated actin turnover. Actin depolymerizing factor (ADF)/cofilin controls actin turnover to sustain axon regeneration after spinal cord injury through its actin-severing activity. This pinpoints ADF/cofilin as a key regulator of axon growth competence, irrespective of developmental stage. These findings reveal the central role of actin dynamics regulation in this process and elucidate a core mechanism underlying axon growth after CNS trauma. Thereby, neurons maintain the capacity to stimulate developmental programs during adult life, expanding their potential for plasticity. Thus, actin turnover is a key process for future regenerative interventions.


Actins/metabolism , Axons/metabolism , Cofilin 1/genetics , Cofilin 2/genetics , Destrin/genetics , Growth Cones/pathology , Nerve Regeneration/genetics , Spinal Cord Injuries/genetics , Animals , Axons/pathology , Cofilin 1/metabolism , Cofilin 2/metabolism , Destrin/metabolism , Growth Cones/metabolism , Intravital Microscopy , Mice , Microscopy, Confocal , Neurons/metabolism , Neurons/pathology , Rats , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Time-Lapse Imaging
6.
Development ; 146(7)2019 04 04.
Article En | MEDLINE | ID: mdl-30910826

The formation of neuronal dendrite branches is fundamental for the wiring and function of the nervous system. Indeed, dendrite branching enhances the coverage of the neuron's receptive field and modulates the initial processing of incoming stimuli. Complex dendrite patterns are achieved in vivo through a dynamic process of de novo branch formation, branch extension and retraction. The first step towards branch formation is the generation of a dynamic filopodium-like branchlet. The mechanisms underlying the initiation of dendrite branchlets are therefore crucial to the shaping of dendrites. Through in vivo time-lapse imaging of the subcellular localization of actin during the process of branching of Drosophila larva sensory neurons, combined with genetic analysis and electron tomography, we have identified the Actin-related protein (Arp) 2/3 complex as the major actin nucleator involved in the initiation of dendrite branchlet formation, under the control of the activator WAVE and of the small GTPase Rac1. Transient recruitment of an Arp2/3 component marks the site of branchlet initiation in vivo These data position the activation of Arp2/3 as an early hub for the initiation of branchlet formation.


Actin-Related Protein 2-3 Complex/metabolism , Dendrites/metabolism , Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/genetics , Actins/metabolism , Animals , Drosophila , Drosophila melanogaster , Sensory Receptor Cells/metabolism
7.
Exp Neurol ; 317: 110-118, 2019 07.
Article En | MEDLINE | ID: mdl-30794766

Axons in the adult mammalian brain and spinal cord fail to regenerate upon lesion. In vivo imaging serves as a tool to investigate the immediate response of axons to injury and how the same injured axons behave over time. Here, we describe the dynamic changes that injured sensory axons undergo and methods of imaging them in vivo. First, we explain how sensory axons in the dorsal column of the adult mouse spinal cord respond to axotomy. Then, we highlight practical considerations for implementing two-photon based in vivo imaging of these axons. Finally, we describe future directions for this technique, including the possibility of in vivo imaging of subcellular dynamics within the axon.


Axons/ultrastructure , Central Nervous System/diagnostic imaging , Central Nervous System/injuries , Sensory Receptor Cells/ultrastructure , Animals , Humans , Nerve Regeneration
...