Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
ACS Appl Mater Interfaces ; 16(23): 30506-30520, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38805354

Low-dimensional materials, such as MoS2, hold promise for use in a host of emerging applications, including flexible, wearable sensors due to their unique electrical, thermal, optical, mechanical, and tribological properties. The implementation of such devices requires an understanding of adhesive phenomena at the interfaces between these materials. Here, we describe combined nanoscale in situ transmission electron microscopy (TEM)/atomic force microscopy (AFM) experiments and simulations measuring the work of adhesion (Wadh) between self-mated contacts of ultrathin nominally amorphous and nanocrystalline MoS2 films deposited on Si scanning probe tips. A customized TEM/AFM nanoindenter permitted high-resolution imaging and force measurements in situ. The Wadh values for nanocrystalline and nominally amorphous MoS2 were 604 ± 323 mJ/m2 and 932 ± 647 mJ/m2, respectively, significantly higher than previously reported values for mechanically exfoliated MoS2 single crystals. Closely matched molecular dynamics (MD) simulations show that these high values can be explained by bonding between the opposing surfaces at defects such as grain boundaries. Simulations show that as grain size decreases, the number of bonds formed, the Wadh and its variability all increase, further supporting that interfacial covalent bond formation causes high adhesion. In some cases, sliding between delaminated MoS2 flakes during separation is observed, which further increases the Wadh and the range of adhesive interaction. These results indicate that for low adhesion, the MoS2 grains should be large relative to the contact area to limit the opportunity for bonding, whereas small grains may be beneficial, where high adhesion is needed to prevent device delamination in flexible systems.

2.
Langmuir ; 40(9): 4601-4614, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38323922

The contact between nanoscale single-crystal silicon asperities and substrates terminated with -H and -OH functional groups is simulated using reactive molecular dynamics (MD). Consistent with previous MD simulations for self-mated surfaces with -H terminations only, adhesion is found to be low at full adsorbate coverages, be it self-mated coverages of mixtures of -H and -OH groups, or just -OH groups. As the coverage reduces, adhesion increases markedly, by factors of ∼5 and ∼6 for -H-terminated surfaces and -OH-terminated surfaces, respectively, and is due to the formation of covalent Si-Si bonds; for -OH-terminated surfaces, some interfacial Si-O-Si bonds are also formed. Thus, covalent linkages need to be broken upon separation of the tip and substrate. In contrast, replacing -H groups with -OH groups while maintaining complete coverage leads to negligible increases in adhesion. This indicates that increases in adhesion require unsaturated sites. Furthermore, plane-wave density functional theory (DFT) calculations were performed to investigate the energetics of two Si(111) surfaces fully terminated by either -H or -OH groups. Importantly for the adhesion results, both DFT and MD calculations predict the correct trends for the relative bond strengths: Si-O > Si-H > Si-Si. This work supports the contention that prior experimental work observing strong increases in adhesion after sliding Si-Si nanoasperities over each other is due to sliding-induced removal of passivating species on the Si surfaces.

3.
ACS Appl Mater Interfaces ; 15(3): 4733-4742, 2023 Jan 25.
Article En | MEDLINE | ID: mdl-36625508

Epitaxial titanium nitride (TiN) and titanium oxynitride (TiON) thin films have been grown on sapphire substrates using a pulsed laser deposition (PLD) method in high-vacuum conditions (base pressure <3 × 10-6 T). This vacuum contains enough residual oxygen to allow a time-independent gas phase oxidation of the ablated species as well as a time-dependent regulated surface oxidation of TiN to TiON films. The time-dependent surface oxidation is controlled by means of film deposition time that, in turn, is controlled by changing the number of laser pulses impinging on the polycrystalline TiN target at a constant repetition rate. By changing the number of laser pulses from 150 to 5000, unoxidized (or negligibly oxidized) and oxidized TiN films have been obtained with the thickness in the range of four unit cells to 70 unit cells of TiN/TiON. X-ray photoelectron spectroscopy (XPS) investigations reveal higher oxygen content in TiON films prepared with a larger number of laser pulses. The oxidation of TiN films is achieved by precisely controlling the time of deposition, which affects the surface diffusion of oxygen to the TiN film lattice. The lattice constants of the TiON films obtained by x-ray diffraction (XRD) increase with the oxygen content in the film, as predicted by molecular dynamics (MD) simulations. The lattice constant increase is explained based on a larger electrostatic repulsive force due to unbalanced local charges in the vicinity of Ti vacancies and substitutional O. The bandgap of TiN and TiON films, measured using UV-visible spectroscopy, has an asymmetric V-shaped variation as a function of the number of pulses. The bandgap variation following the lower number of laser pulses (150-750) of the V-shaped curve is explained using the quantum confinement effect, while the bandgap variation following the higher number of laser pulses (1000-5000) is associated with the modification in the band structure due to hybridization of O2p and N2p energy levels.

4.
ACS Appl Mater Interfaces ; 11(43): 40734-40748, 2019 Oct 30.
Article En | MEDLINE | ID: mdl-31498997

Nanoindentation and sliding experiments using single-crystal silicon atomic force microscope probes in contact with diamond substrates in vacuum were carried out in situ with a transmission electron microscope (TEM). After sliding, the experimentally measured works of adhesion were significantly larger than values estimated for pure van der Waals (vdW) interactions. Furthermore, the works of adhesion increased with both the normal stress and speed during the sliding, indicating that applied stress played a central role in the reactivity of the interface. Complementary molecular dynamics (MD) simulations were used to lend insight into the atomic-level processes that occur during these experiments. Simulations using crystalline silicon tips with varying degrees of roughness and diamond substrates with different amounts of hydrogen termination demonstrated two relevant phenomena. First, covalent bonds formed across the interface, where the number of bonds formed was affected by the hydrogen termination of the substrate, the tip roughness, the applied stress, and the stochastic nature of bond formation. Second, for initially rough tips, the sliding motion and the associated application of shear stress produced an increase in irreversible atomic-scale plasticity that tended to smoothen the tips' surfaces, which resulted in a concomitant increase in adhesion. In contrast, for initially smooth tips, sliding roughened some of these tips. In the limit of low applied stress, the experimentally determined works of adhesion match the intrinsic (van der Waals) work of adhesion for an atomically smooth silicon-diamond interface obtained from MD simulations. The results provide mechanistic interpretations of sliding-induced changes and interfacial adhesion and may help inform applications involving adhesive interfaces that are subject to applied shear forces and displacements.

5.
ACS Nano ; 8(7): 7027-40, 2014 Jul 22.
Article En | MEDLINE | ID: mdl-24922087

In this study, we explore the wear behavior of amplitude modulation atomic force microscopy (AM-AFM, an intermittent-contact AFM mode) tips coated with a common type of diamond-like carbon, amorphous hydrogenated carbon (a-C:H), when scanned against an ultra-nanocrystalline diamond (UNCD) sample both experimentally and through molecular dynamics (MD) simulations. Finite element analysis is utilized in a unique way to create a representative geometry of the tip to be simulated in MD. To conduct consistent and quantitative experiments, we apply a protocol that involves determining the tip-sample interaction geometry, calculating the tip-sample force and normal contact stress over the course of the wear test, and precisely quantifying the wear volume using high-resolution transmission electron microscopy imaging. The results reveal gradual wear of a-C:H with no sign of fracture or plastic deformation. The wear rate of a-C:H is consistent with a reaction-rate-based wear theory, which predicts an exponential dependence of the rate of atom removal on the average normal contact stress. From this, kinetic parameters governing the wear process are estimated. MD simulations of an a-C:H tip, whose radius is comparable to the tip radii used in experiments, making contact with a UNCD sample multiple times exhibit an atomic-level removal process. The atomistic wear events observed in the simulations are correlated with under-coordinated atomic species at the contacting surfaces.

6.
Philos Trans A Math Phys Eng Sci ; 366(1869): 1469-95, 2008 Apr 28.
Article En | MEDLINE | ID: mdl-18156124

The theoretical examination of the friction between solids is discussed with a focus on self-assembled monolayers, carbon-containing materials and antiwear additives. Important findings are illustrated by describing examples where simulations have complemented experimental work by providing a deeper understanding of the molecular origins of friction. Most of the work discussed herein makes use of classical molecular dynamics (MD) simulations. Of course, classical MD is not the only theoretical tool available to study friction. In view of that, a brief review of the early models of friction is also given. It should be noted that some topics related to the friction between solids, i.e. theory of electronic friction, are not discussed here but will be discussed in a subsequent review.

7.
J Chem Phys ; 125(14): 144506, 2006 Oct 14.
Article En | MEDLINE | ID: mdl-17042608

The stress and elasticity tensors for interatomic potentials that depend explicitly on bond bending and dihedral angles are derived by taking strain derivatives of the free energy. The resulting expressions can be used in Monte Carlo and molecular dynamics simulations in the canonical and microcanonical ensembles. These expressions are particularly useful at low temperatures where it is difficult to obtain results using the fluctuation formula of Parrinello and Rahman [J. Chem. Phys. 76, 2662 (1982)]. Local elastic constants within heterogeneous and composite materials can also be calculated as a function of temperature using this method. As an example, the stress and elasticity tensors are derived for the second-generation reactive empirical bond-order potential. This potential energy function was used because it has been used extensively in computer simulations of hydrocarbon materials, including carbon nanotubes, and because it is one of the few potential energy functions that can model chemical reactions. To validate the accuracy of the derived expressions, the elastic constants for diamond and graphite and the Young's Modulus of a (10,10) single-wall carbon nanotube are all calculated at T = 0 K using this potential and compared with previously published data and results obtained using other potentials.

...