Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2401306, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031098

RESUMEN

Cancer immunotherapy has emerged as a promising approach for the induction of an antitumor response. While immunotherapy response rates are very high in some cancers, the efficacy against solid tumors remains limited caused by the presence of an immunosuppressive tumor microenvironment. Induction of immunogenic cell death (ICD) in the tumor can be used to boost immunotherapy response in solid cancers by eliciting the release of immune-stimulatory components. However, the delivery of components inducing ICD to tumor sites remains a challenge. Here, a novel delivery method is described for antitumor therapy based on MLKL (Mixed Lineage Kinase Domain-Like), a key mediator of necroptosis and inducer of ICD. A novel highly branched poly (ß-amino ester)s (HPAEs) system is designed to efficiently deliver MLKL plasmid DNA to the tumor with consequent enhancement of immune antigen presentation for T cell responses in vitro, and improved antitumor response and prolonged survival in tumor-bearing mice. Combination of the therapy with anti-PD-1 treatment revealed significant changes in the composition of the tumor microenvironment, including increased infiltration of CD8+ T cells and tumor-associated lymphocytes. Overall, the HPAEs delivery system can enhance MLKL-based cancer immunotherapy and promote antitumor immune responses, providing a potential treatment to boost cancer immunotherapies.

2.
J Pathol ; 263(3): 360-371, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38779852

RESUMEN

Mutations are abundantly present in tissues of healthy individuals, including the breast epithelium. Yet it remains unknown whether mutant cells directly induce lesion formation or first spread, leading to a field of mutant cells that is predisposed towards lesion formation. To study the clonal and spatial relationships between morphologically normal breast epithelium adjacent to pre-cancerous lesions, we developed a three-dimensional (3D) imaging pipeline combined with spatially resolved genomics on archival, formalin-fixed breast tissue with the non-obligate breast cancer precursor ductal carcinoma in situ (DCIS). Using this 3D image-guided characterization method, we built high-resolution spatial maps of DNA copy number aberration (CNA) profiles within the DCIS lesion and the surrounding normal mammary ducts. We show that the local heterogeneity within a DCIS lesion is limited. However, by mapping the CNA profiles back onto the 3D reconstructed ductal subtree, we find that in eight out of 16 cases the healthy epithelium adjacent to the DCIS lesions has overlapping structural variations with the CNA profile of the DCIS. Together, our study indicates that pre-malignant breast transformations frequently develop within mutant clonal fields of morphologically normal-looking ducts. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Variaciones en el Número de Copia de ADN , Mutación , Humanos , Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Imagenología Tridimensional , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Células Clonales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA