Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Metab Dispos ; 51(10): 1391-1402, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37524541

RESUMEN

Numerous biomedical applications have been described for liver-humanized mouse models, such as in drug metabolism or drug-drug interaction (DDI) studies. However, the strong enlargement of the bile acid (BA) pool due to lack of recognition of murine intestine-derived fibroblast growth factor-15 by human hepatocytes and a resulting upregulation in the rate-controlling enzyme for BA synthesis, cytochrome P450 (CYP) 7A1, may pose a challenge in interpreting the results obtained from such mice. To address this challenge, the human fibroblast growth factor-19 (FGF19) gene was inserted into the Fah-/- , Rag2-/- , Il2rg-/- NOD (FRGN) mouse model, allowing repopulation with human hepatocytes capable of responding to FGF19. While a decrease in CYP7A1 expression in human hepatocytes from humanized FRGN19 mice (huFRGN19) and a concomitant reduction in BA production was previously shown, a detailed analysis of the BA pool in these animals has not been elucidated. Furthermore, there are sparse data on the use of this model to assess potential clinical DDI. In the present work, the change in BA composition in huFRGN19 compared with huFRGN control animals was systematically evaluated, and the ability of the model to recapitulate a clinically described CYP3A4-mediated DDI was assessed. In addition to a massive reduction in the total amount of BA, FGF19 expression in huFRGN19 mice resulted in significant changes in the profile of various primary, secondary, and sulfated BAs in serum and feces. Moreover, as observed clinically, administration of the pregnane X receptor agonist rifampicin reduced the oral exposure of the CYP3A4 substrate triazolam. SIGNIFICANCE STATEMENT: Transgenic expression of FGF19 normalizes the unphysiologically high level of bile acids in a chimeric liver-humanized mouse model and leads to massive changes in bile acid composition. These adaptations could overcome one of the potential impediments in the use of these mouse models for drug-drug interaction studies.


Asunto(s)
Ácidos y Sales Biliares , Citocromo P-450 CYP3A , Ratones , Humanos , Animales , Ácidos y Sales Biliares/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Ratones Endogámicos NOD , Hígado/metabolismo , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/metabolismo , Interacciones Farmacológicas
2.
Proc Natl Acad Sci U S A ; 116(8): 3072-3081, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30718425

RESUMEN

Although "genomically" humanized animals are invaluable tools for generating human disease models as well as for biomedical research, their development has been mainly restricted to mice via established transgenic-based and embryonic stem cell-based technologies. Since rats are widely used for studying human disease and for drug efficacy and toxicity testing, humanized rat models would be preferred over mice for several applications. However, the development of sophisticated humanized rat models has been hampered by the difficulty of complex genetic manipulations in rats. Additionally, several genes and gene clusters, which are megabase range in size, were difficult to introduce into rats with conventional technologies. As a proof of concept, we herein report the generation of genomically humanized rats expressing key human drug-metabolizing enzymes in the absence of their orthologous rat counterparts via the combination of chromosome transfer using mouse artificial chromosome (MAC) and genome editing technologies. About 1.5 Mb and 700 kb of the entire UDP glucuronosyltransferase family 2 and cytochrome P450 family 3 subfamily A genomic regions, respectively, were successfully introduced via the MACs into rats. The transchromosomic rats were combined with rats carrying deletions of the endogenous orthologous genes, achieved by genome editing. In the "transchromosomic humanized" rat strains, the gene expression, pharmacokinetics, and metabolism observed in humans were well reproduced. Thus, the combination of chromosome transfer and genome editing technologies can be used to generate fully humanized rats for improved prediction of the pharmacokinetics and drug-drug interactions in humans, and for basic research, drug discovery, and development.


Asunto(s)
Citocromo P-450 CYP3A/genética , Edición Génica , Glucuronosiltransferasa/genética , Inactivación Metabólica/genética , Animales , Técnicas de Transferencia de Gen , Genoma , Humanos , Tasa de Depuración Metabólica/genética , Ratones , Ratones Transgénicos , Ratas
3.
J Pharm Sci ; 105(4): 1398-404, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27019957

RESUMEN

NVS123 is a poorly water-soluble protease 56 inhibitor in clinical development. Data from in vitro hepatocyte studies suggested that NVS123 is mainly metabolized by CYP3A4. As a consequence of limited solubility, NVS123 therapeutic plasma exposures could not be achieved even with high doses and optimized formulations. One approach to overcome NVS123 developability issues was to increase plasma exposure by coadministrating it with an inhibitor of CYP3A4 such as ritonavir. A clinical boost effect was predicted by using physiologically based pharmacokinetic (PBPK) modeling. However, initial boost predictions lacked sufficient confidence because a key parameter, fraction of drug metabolized by CYP3A4 (fmCYP3A4), could not be estimated with accuracy on account of disconnects between in vitro and in vivo preclinical data. To accurately estimate fmCYP3A4 in human, an in vivo boost effect study was conducted using CYP3A4-humanized mouse model which showed a 33- to 56-fold exposure boost effect. Using a top-down approach, human fmCYP3A4 for NVS123 was estimated to be very high and included in the human PBPK modeling to support subsequent clinical study design. The combined use of the in vivo boost study in CYP3A4-humanized mouse model mice along with PBPK modeling accurately predicted the clinical outcome and identified a significant NVS123 exposure boost (∼42-fold increase) with ritonavir.


Asunto(s)
Fármacos Anti-VIH/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Animales , Fármacos Anti-VIH/química , Fármacos Anti-VIH/metabolismo , Simulación por Computador , Inhibidores del Citocromo P-450 CYP3A/farmacología , Interacciones Farmacológicas , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Modelos Biológicos , Ritonavir/farmacología
4.
Mol Pharmacol ; 89(5): 492-504, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26893303

RESUMEN

Breast cancer resistance protein (BCRP) is expressed in various tissues, such as the gut, liver, kidney and blood brain barrier (BBB), where it mediates the unidirectional transport of substrates to the apical/luminal side of polarized cells. Thereby BCRP acts as an efflux pump, mediating the elimination or restricting the entry of endogenous compounds or xenobiotics into tissues and it plays important roles in drug disposition, efficacy and safety. Bcrp knockout mice (Bcrp(-/-)) have been used widely to study the role of this transporter in limiting intestinal absorption and brain penetration of substrate compounds. Here we describe the first generation and characterization of a mouse line humanized for BCRP (hBCRP), in which the mouse coding sequence from the start to stop codon was replaced with the corresponding human genomic region, such that the human transporter is expressed under control of the murineBcrppromoter. We demonstrate robust human and loss of mouse BCRP/Bcrp mRNA and protein expression in the hBCRP mice and the absence of major compensatory changes in the expression of other genes involved in drug metabolism and disposition. Pharmacokinetic and brain distribution studies with several BCRP probe substrates confirmed the functional activity of the human transporter in these mice. Furthermore, we provide practical examples for the use of hBCRP mice to study drug-drug interactions (DDIs). The hBCRP mouse is a promising model to study the in vivo role of human BCRP in limiting absorption and BBB penetration of substrate compounds and to investigate clinically relevant DDIs involving BCRP.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Xenobióticos/farmacocinética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Animales , Disponibilidad Biológica , Biotransformación/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Interacciones Farmacológicas , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Sustitución del Gen , Humanos , Absorción Intestinal/efectos de los fármacos , Masculino , Moduladores del Transporte de Membrana/sangre , Moduladores del Transporte de Membrana/metabolismo , Moduladores del Transporte de Membrana/farmacocinética , Moduladores del Transporte de Membrana/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Regiones Promotoras Genéticas/efectos de los fármacos , ARN Mensajero/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Distribución Tisular/efectos de los fármacos , Xenobióticos/sangre , Xenobióticos/metabolismo , Xenobióticos/farmacología
5.
Drug Discov Today ; 21(2): 250-63, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26360054

RESUMEN

Mice that have been genetically humanized for proteins involved in drug metabolism and toxicity and mice engrafted with human hepatocytes are emerging and promising in vivo models for an improved prediction of the pharmacokinetic, drug-drug interaction and safety characteristics of compounds in humans. The specific advantages and disadvantages of these models should be carefully considered when using them for studies in drug discovery and development. Here, an overview on the corresponding genetically humanized and chimeric liver humanized mouse models described to date is provided and illustrated with examples of their utility in drug metabolism and toxicity studies. We compare the strength and weaknesses of the two different approaches, give guidance for the selection of the appropriate model for various applications and discuss future trends and perspectives.


Asunto(s)
Modelos Animales , Preparaciones Farmacéuticas/metabolismo , Animales , Quimera , Descubrimiento de Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Hígado/metabolismo , Ratones , Ratones Transgénicos
6.
Drug Metab Dispos ; 43(11): 1679-90, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26265742

RESUMEN

Variability in drug pharmacokinetics is a major factor in defining drug efficacy and side effects. There remains an urgent need, particularly with the growing use of polypharmacy, to obtain more informative experimental data predicting clinical outcomes. Major species differences in multiplicity, substrate specificity, and regulation of enzymes from the cytochrome P450-dependent mono-oxygenase system play a critical role in drug metabolism. To develop an in vivo model for predicting human responses to drugs, we generated a mouse, where 31 P450 genes from the Cyp2c, Cyp2d, and Cyp3a gene families were exchanged for their relevant human counterparts. The model has been improved through additional humanization for the nuclear receptors constitutive androgen receptor and pregnane X receptor that control the expression of key drug metabolizing enzymes and transporters. In this most complex humanized mouse model reported to date, the cytochromes P450 function as predicted and we illustrate how these mice can be applied to predict drug-drug interactions in humans.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Modelos Animales , Preparaciones Farmacéuticas/metabolismo , Transducción de Señal/fisiología , Animales , Citocromo P-450 CYP3A/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Microsomas Hepáticos/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Transducción de Señal/efectos de los fármacos
7.
Drug Metab Dispos ; 43(9): 1326-30, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26109562

RESUMEN

Cytochrome P450 monooxygenases (P450s), which are well-known drug-metabolizing enzymes, are thought to play a signal transduction role in µ opioid analgesia and may serve as high-affinity (3)H-cimetidine ((3)HCIM) binding sites in the brain. (3)HCIM binding sites may also be related to opioid or nonopioid analgesia. However, of the more than 100 murine P450 enzymes, the specific isoform(s) responsible for either function have not been identified. Presently, three lines of constitutive P450 gene cluster knockout (KO) mice with full-length deletions of 14 Cyp2c, 9 Cyp2d, and 7 Cyp3a genes were studied for deficiencies in (3)HCIM binding and for opioid analgesia. Liver and brain homogenates from all three genotypes showed normal (3)HCIM binding values, indicating that gene products of Cyp2d, Cyp3a, and Cyp2c are not (3)HCIM-binding proteins. Cyp2d KO and Cyp3a KO mice showed normal antinociceptive responses to a moderate systemic dose of morphine (20 mg/kg, s.c.), thereby excluding 16 P450 isoforms as mediators of opioid analgesia. In contrast, Cyp2c KO mice showed a 41% reduction in analgesic responses following systemically (s.c.) administered morphine. However, the significance of brain Cyp2c gene products in opioid analgesia is uncertain because little or no analgesic deficits were noted in Cyp2c KO mice following intracerebroventricular or intrathecalmorphine administration, respectively. These results show that the gene products of Cyp2d and Cyp3a do not contribute to µ opioid analgesia in the central nervous system. A possible role for Cyp2c gene products in opioid analgesia requires further consideration.


Asunto(s)
Analgésicos Opioides/administración & dosificación , Sistema Enzimático del Citocromo P-450/metabolismo , Isoenzimas/metabolismo , Analgésicos Opioides/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/genética , Isoenzimas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
8.
Mol Pharmacol ; 87(4): 733-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25657337

RESUMEN

The cytochrome P450-dependent mono-oxygenase system is responsible for the metabolism and disposition of chemopreventive agents, chemical toxins and carcinogens, and >80% of therapeutic drugs. Cytochrome P450 (P450) activity is regulated transcriptionally and by the rate of electron transfer from P450 reductase. In vitro studies have demonstrated that cytochrome b5 (Cyb5) also modulates P450 function. We recently showed that hepatic deletion of Cyb5 in the mouse (HBN) markedly alters in vivo drug pharmacokinetics; a key outstanding question is whether Cyb5 modulates the activity of the major human P450s in drug disposition in vivo. To address this, we crossed mice humanized for CYP2D6 or CYP3A4 with mice carrying a hepatic Cyb5 deletion. In vitro triazolam 4-hydroxylation (probe reaction for CYP3A4) was reduced by >50% in hepatic microsomes from CYP3A4-HBN mice compared with controls. Similar reductions in debrisoquine 4-hydroxylation and metoprolol α-hydroxylation were observed using CYP2D6-HBN microsomes, indicating a significant role for Cyb5 in the activity of both enzymes. This effect was confirmed by the concentration-dependent restoration of CYP3A4-mediated triazolam turnover and CYP2D6-mediated bufuralol and debrisoquine turnover on addition of Escherichia coli membranes containing recombinant Cyb5. In vivo, the peak plasma concentration and area under the concentration time curve from 0 to 8 hours (AUC0-8 h) of triazolam were increased 4- and 5.7-fold, respectively, in CYP3A4-HBN mice. Similarly, the pharmacokinetics of bufuralol and debrisoquine were significantly altered in CYP2D6-HBN mice, the AUC0-8 h being increased ∼1.5-fold and clearance decreased by 40-60%. These data demonstrate that Cyb5 can be a major determinant of CYP3A4 and CYP2D6 activity in vivo, with a potential impact on the metabolism, efficacy, and side effects of numerous therapeutic drugs.


Asunto(s)
Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Citocromos b5/metabolismo , Animales , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP3A/genética , Citocromos b5/genética , Debrisoquina/farmacocinética , Etanolaminas/farmacocinética , Femenino , Humanos , Masculino , Ratones Noqueados , Microsomas Hepáticos/metabolismo , Nifedipino/farmacocinética , Factores Sexuales , Triazolam/farmacocinética
9.
Drug Metab Dispos ; 42(8): 1301-13, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24855184

RESUMEN

Organic anion transporting polypeptide (Oatp) 1a/1b knockout and OATP1B1 and -1B3 humanized mouse models are promising tools for studying the roles of these transporters in drug disposition. Detailed characterization of these models will help to better understand their utility for predicting clinical outcomes. To advance this approach, we carried out a comprehensive analysis of these mouse lines by evaluating the compensatory changes in mRNA expression, quantifying the amounts of OATP1B1 and -1B3 protein by liquid chromatography-tandem mass spectrometry, and studying the active uptake in isolated hepatocytes and the pharmacokinetics of some prototypical substrates including statins. Major outcomes from these studies were 1) mostly moderate compensatory changes in only a few genes involved in drug metabolism and disposition, 2) a robust hepatic expression of OATP1B1 and -1B3 proteins in the respective humanized mouse models, and 3) functional activities of the human transporters in hepatocytes isolated from the humanized models with several substrates tested in vitro and with pravastatin in vivo. However, the expression of OATP1B1 and -1B3 in the humanized models did not significantly alter liver or plasma concentrations of rosuvastatin and pitavastatin compared with Oatp1a/1b knockout controls under the conditions used in our studies. Hence, although the humanized OATP1B1 and -1B3 mice showed in vitro and/or in vivo functional activity with some statins, further characterization of these models is required to define their potential use and limitations in the prediction of drug disposition and drug-drug interactions in humans.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Transportadores de Anión Orgánico/metabolismo , Animales , Interacciones Farmacológicas/fisiología , Fluorobencenos/metabolismo , Hepatocitos/metabolismo , Humanos , Hígado/enzimología , Hígado/metabolismo , Transportador 1 de Anión Orgánico Específico del Hígado , Masculino , Ratones , Pravastatina/metabolismo , Pirimidinas/metabolismo , ARN Mensajero/genética , Rosuvastatina Cálcica , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos , Sulfonamidas/metabolismo
10.
Toxicol Sci ; 139(2): 501-11, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24690595

RESUMEN

The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CAR(KO)-PXR(KO)), double humanized CAR and PXR (CAR(h)-PXR(h)), and wild-type C57BL/6 mice. Wild-type and CAR(h)-PXR(h) mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CAR(KO)-PXR(KO) mouse livers and largely reversible in wild-type and CAR(h)-PXR(h) mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CAR(h)-PXR(h) mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Hígado/efectos de los fármacos , Fenobarbital/toxicidad , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Esteroides/genética , Transcriptoma/efectos de los fármacos , Animales , Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Receptor de Androstano Constitutivo , Perfilación de la Expresión Génica , Humanos , Hígado/enzimología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenobarbital/farmacocinética , Receptor X de Pregnano , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Especificidad de la Especie , Xenobióticos/farmacocinética , Xenobióticos/toxicidad
11.
Drug Metab Dispos ; 42(6): 1022-30, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24671958

RESUMEN

In humans, 75% of all drugs are metabolized by the cytochrome P450-dependent monooxygenase system. Enzymes encoded by the CYP2C, CYP2D, and CYP3A gene clusters account for ∼80% of this activity. There are profound species differences in the multiplicity of cytochrome P450 enzymes, and the use of mouse models to predict pathways of drug metabolism is further complicated by overlapping substrate specificity between enzymes from different gene families. To establish the role of the hepatic and extrahepatic P450 system in drug and foreign chemical disposition, drug efficacy, and toxicity, we created a unique mouse model in which 30 cytochrome P450 genes from the Cyp2c, Cyp2d, and Cyp3a gene clusters have been deleted. Remarkably, despite a wide range of putative important endogenous functions, Cyp2c/2d/3a KO mice were viable and fertile, demonstrating that these genes have evolved primarily as detoxification enzymes. Although there was no overt phenotype, detailed examination showed Cyp2c/2d/3a KO mice had a smaller body size (15%) and larger livers (20%). Changes in hepatic morphology and a decreased blood glucose (30%) were also noted. A five-drug cocktail of cytochrome P450 isozyme probe substrates were used to evaluate changes in drug pharmacokinetics; marked changes were observed in either the pharmacokinetics or metabolites formed from Cyp2c, Cyp2d, and Cyp3a substrates, whereas the metabolism of the Cyp1a substrate caffeine was unchanged. Thus, Cyp2c/2d/3a KO mice provide a powerful model to study the in vivo role of the P450 system in drug metabolism and efficacy, as well as in chemical toxicity.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Eliminación de Gen , Intestino Delgado/enzimología , Microsomas Hepáticos/enzimología , Preparaciones Farmacéuticas/metabolismo , Animales , Intestino Delgado/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Microsomas Hepáticos/efectos de los fármacos , Preparaciones Farmacéuticas/administración & dosificación
12.
Xenobiotica ; 44(2): 96-108, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23845026

RESUMEN

1. Drug metabolizing enzymes and transporters play important roles in the absorption, metabolism, tissue distribution and excretion of various compounds and their metabolites and thus can significantly affect their efficacy and safety. Furthermore, they can be involved in drug-drug interactions which can result in adverse responses, life-threatening toxicity or impaired efficacy. Significant species differences in the interaction of compounds with drug metabolizing enzymes and transporters have been described. 2. In order to overcome the limitation of animal models in accurately predicting human responses, a large variety of mouse models humanized for drug metabolizing enzymes and to a lesser extent drug transporters have been created. 3. This review summarizes the literature describing these mouse models and their key applications in studying the role of drug metabolizing enzymes and transporters in drug bioavailability, tissue distribution, clearance and drug-drug interactions as well as in human metabolite testing and risk assessment. 4. Though such humanized mouse models have certain limitations, there is great potential for their use in basic research and for testing and development of new medicines. These limitations and future potentials will be discussed.


Asunto(s)
Enzimas/metabolismo , Inactivación Metabólica/fisiología , Proteínas de Transporte de Membrana/metabolismo , Ratones Noqueados , Fenómenos Farmacológicos , Animales , Disponibilidad Biológica , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones Farmacológicas , Enzimas/genética , Humanos , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Noqueados/genética , Ratones Noqueados/metabolismo , Ratones Transgénicos , Modelos Animales , Medición de Riesgo
13.
Drug Discov Today ; 18(23-24): 1200-11, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23872278

RESUMEN

Identifying in vivo models that are naturally predictive for particular areas of study in humans can be challenging due to the divergence that has occurred during speciation. One solution to this challenge that is gaining increasing traction is the use of genetic engineering to introduce human genes into mice to generate superior models for predicting human responses. This review describes the state-of-the-art for generating such models, provides an overview of the types of genetically humanized mouse models described to date and their applications in basic research, drug discovery and development and to understand clinical drug toxicity. We discuss limitations and explore promising future directions for the use of genetically humanized mice to further improve translational research.


Asunto(s)
Diseño de Fármacos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Ingeniería Genética/métodos , Animales , Animales Modificados Genéticamente , Descubrimiento de Drogas/métodos , Humanos , Ratones , Ratones Transgénicos , Modelos Animales , Investigación Biomédica Traslacional/métodos
14.
Toxicol Sci ; 131(2): 375-86, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23091169

RESUMEN

The molecular events during nongenotoxic carcinogenesis and their temporal order are poorly understood but thought to include long-lasting perturbations of gene expression. Here, we have investigated the temporal sequence of molecular and pathological perturbations at early stages of phenobarbital (PB) mediated liver tumor promotion in vivo. Molecular profiling (mRNA, microRNA [miRNA], DNA methylation, and proteins) of mouse liver during 13 weeks of PB treatment revealed progressive increases in hepatic expression of long noncoding RNAs and miRNAs originating from the Dlk1-Dio3 imprinted gene cluster, a locus that has recently been associated with stem cell pluripotency in mice and various neoplasms in humans. PB induction of the Dlk1-Dio3 cluster noncoding RNA (ncRNA) Meg3 was localized to glutamine synthetase-positive hypertrophic perivenous hepatocytes, suggesting a role for ß-catenin signaling in the dysregulation of Dlk1-Dio3 ncRNAs. The carcinogenic relevance of Dlk1-Dio3 locus ncRNA induction was further supported by in vivo genetic dependence on constitutive androstane receptor and ß-catenin pathways. Our data identify Dlk1-Dio3 ncRNAs as novel candidate early biomarkers for mouse liver tumor promotion and provide new opportunities for assessing the carcinogenic potential of novel compounds.


Asunto(s)
Biomarcadores de Tumor/genética , Impresión Genómica , Péptidos y Proteínas de Señalización Intercelular/genética , Yoduro Peroxidasa/genética , Neoplasias Hepáticas Experimentales/genética , Familia de Multigenes , ARN no Traducido/genética , Animales , Proteínas de Unión al Calcio , Receptor de Androstano Constitutivo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Reacción en Cadena de la Polimerasa , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Transcriptoma , beta Catenina/metabolismo
15.
Drug Metab Rev ; 45(1): 110-21, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23173549

RESUMEN

The nuclear receptors pregnane X receptor, constitutive androstane receptor, and peroxisome proliferator-activated receptor alpha have important endogenous functions and are also involved in the induction of drug-metabolizing enzymes and transporters in response to exogenous xenobiotics. Though not belonging to the same protein family, the Per-Sim-ARNT domain receptor aryl hydrocarbon receptor functionally overlaps with the three nuclear receptors in many aspects and is therefore included in this review. Significant species differences in ligand affinity and biological responses as a result of activation of these receptors have been described. Several xenobiotic receptor humanized mice have been created to overcome these species differences and to provide in vivo models that are more predictive for human responses. This review provides an overview of the different xenobiotic receptor humanized mouse models described to date and will summarize how these models can be applied in basic research and improve drug discovery and development. Some of the key applications in the evaluation of drug induction, drug-drug interactions, nongenotoxic carcinogenicity, other toxicity, or efficacy studies are described. We also discuss relevant considerations in the interpretation of such data and potential future directions for the use of xenobiotic receptor humanized mice.


Asunto(s)
Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Xenobióticos/metabolismo , Xenobióticos/farmacología , Animales , Descubrimiento de Drogas/métodos , Humanos , Inactivación Metabólica , Ligandos , Ratones , Xenobióticos/farmacocinética
16.
Drug Metab Dispos ; 40(11): 2212-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22917771

RESUMEN

The multidrug resistance protein (MRP) 2 is predominantly expressed in liver, intestine, and kidney, where it plays an important role in the excretion of a range of drugs and their metabolites or endogenous compounds into bile, feces, and urine. Mrp knockout [Mrp2(-/-)] mice have been used recently to study the role of MRP2 in drug disposition. Here, we describe the first generation and initial characterization of a mouse line humanized for MRP2 (huMRP2), which is nulled for the mouse Mrp2 gene and expresses the human transporter in the organs and cell types where MRP2 is normally expressed. Analysis of the mRNA expression for selected cytochrome P450 and transporter genes revealed no major changes in huMRP2 mice compared with wild-type controls. We show that human MRP2 is able to compensate functionally for the loss of the mouse transporter as demonstrated by comparable bilirubin levels in the humanized mice and wild-type controls, in contrast to the hyperbilirubinemia phenotype that is observed in MRP2(-/-) mice. The huMRP2 mouse provides a model to study the role of the human transporter in drug disposition and in assessing the in vivo consequences of inhibiting this transporter by compounds interacting with human MRP2.


Asunto(s)
Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Animales , Bilirrubina/sangre , Bilirrubina/genética , Bilirrubina/metabolismo , Bilirrubina/orina , Transporte Biológico , Línea Celular , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Células Madre Embrionarias/metabolismo , Técnicas de Sustitución del Gen , Humanos , Mucosa Intestinal/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , ARN Mensajero/genética
17.
Mol Pharmacol ; 82(6): 1022-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22918969

RESUMEN

Compared with rodents and many other animal species, the human cytochrome P450 (P450) Cyp2c gene cluster varies significantly in the multiplicity of functional genes and in the substrate specificity of its enzymes. As a consequence, the use of wild-type animal models to predict the role of human CYP2C enzymes in drug metabolism and drug-drug interactions is limited. Within the human CYP2C cluster CYP2C9 is of particular importance, because it is one of the most abundant P450 enzymes in human liver, and it is involved in the metabolism of a wide variety of important drugs and environmental chemicals. To investigate the in vivo functions of cytochrome P450 Cyp2c genes and to establish a model for studying the functions of CYP2C9 in vivo, we have generated a mouse model with a deletion of the murine Cyp2c gene cluster and a corresponding humanized model expressing CYP2C9 specifically in the liver. Despite the high number of functional genes in the mouse Cyp2c cluster and the reported roles of some of these proteins in different biological processes, mice deleted for Cyp2c genes were viable and fertile but showed certain phenotypic alterations in the liver. The expression of CYP2C9 in the liver also resulted in viable animals active in the metabolism and disposition of a number of CYP2C9 substrates. These mouse lines provide a powerful tool for studying the role of Cyp2c genes and of CYP2C9 in particular in drug disposition and as a factor in drug-drug interaction.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/genética , Sistema Enzimático del Citocromo P-450/genética , Familia de Multigenes/genética , Animales , Hidrocarburo de Aril Hidroxilasas/metabolismo , Citocromo P-450 CYP2C9 , Inhibidores Enzimáticos del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Hidroxilación , Inactivación Metabólica , Hígado/efectos de los fármacos , Hígado/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Familia de Multigenes/efectos de los fármacos , Tolbutamida/metabolismo , Tolbutamida/farmacocinética
18.
Mol Pharmacol ; 81(1): 63-72, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21989258

RESUMEN

The highly polymorphic human cytochrome P450 2D6 enzyme is involved in the metabolism of up to 25% of all marketed drugs and accounts for significant individual differences in response to CYP2D6 substrates. Because of the differences in the multiplicity and substrate specificity of CYP2D family members among species, it is difficult to predict pathways of human CYP2D6-dependent drug metabolism on the basis of animal studies. To create animal models that reflect the human situation more closely and that allow an in vivo assessment of the consequences of differential CYP2D6 drug metabolism, we have developed a novel straightforward approach to delete the entire murine Cyp2d gene cluster and replace it with allelic variants of human CYP2D6. By using this approach, we have generated mouse lines expressing the two frequent human protein isoforms CYP2D6.1 and CYP2D6.2 and an as yet undescribed variant of this enzyme, as well as a Cyp2d cluster knockout mouse. We demonstrate that the various transgenic mouse lines cover a wide spectrum of different human CYP2D6 metabolizer phenotypes. The novel humanization strategy described here provides a robust approach for the expression of different CYP2D6 allelic variants in transgenic mice and thus can help to evaluate potential CYP2D6-dependent interindividual differences in drug response in the context of personalized medicine.


Asunto(s)
Citocromo P-450 CYP2D6/metabolismo , Células Madre Embrionarias/metabolismo , Modelos Animales , Alelos , Animales , Línea Celular , Interacciones Farmacológicas/fisiología , Células Madre Embrionarias/enzimología , Variación Genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
19.
Mol Pharmacol ; 80(3): 518-28, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21628639

RESUMEN

Cytochrome P450 (P450) 3A4 is the predominant P450 enzyme expressed in human liver and intestine, and it is involved in the metabolism of approximately 50% of clinically used drugs. Because of the differences in the multiplicity of CYP3A genes and the poor correlation of substrate specificity of CYP3A proteins between species, the extrapolation of CYP3A-mediated metabolism of a drug from animals to man is difficult. This situation is further complicated by the fact that the predictability of the clinically common drug-drug interaction of pregnane X receptor (PXR)-mediated CYP3A4 induction by animal studies is limited as a result of marked species differences in the interaction of many drugs with this receptor. Here we describe a novel multiple humanized mouse line that combines a humanization for PXR, the closely related constitutive androstane receptor, and a replacement of the mouse Cyp3a cluster with a large human genomic region carrying CYP3A4 and CYP3A7. We provide evidence that this model shows a human-like CYP3A4 induction response to different PXR activators, that it allows the ranking of these activators according to their potency to induce CYP3A4 expression in the human liver, and that it provides an experimental approach to quantitatively predict PXR/CYP3A4-mediated drug-drug interactions in humans.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Receptores de Esteroides/metabolismo , Animales , Citocromo P-450 CYP3A/efectos de los fármacos , Interacciones Farmacológicas , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptor X de Pregnano , Receptores de Esteroides/efectos de los fármacos
20.
Toxicol Sci ; 116(2): 452-66, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20403969

RESUMEN

Mouse nongenotoxic hepatocarcinogens phenobarbital (PB) and chlordane induce hepatomegaly characterized by hypertrophy and hyperplasia. Increased cell proliferation is implicated in the mechanism of tumor induction. The relevance of these tumors to human health is unclear. The xenoreceptors, constitutive androstane receptors (CARs), and pregnane X receptor (PXR) play key roles in these processes. Novel "humanized" and knockout models for both receptors were developed to investigate potential species differences in hepatomegaly. The effects of PB (80 mg/kg/4 days) and chlordane (10 mg/kg/4 days) were investigated in double humanized PXR and CAR (huPXR/huCAR), double knockout PXR and CAR (PXRKO/CARKO), and wild-type (WT) C57BL/6J mice. In WT mice, both compounds caused increased liver weight, hepatocellular hypertrophy, and cell proliferation. Both compounds caused alterations to a number of cell cycle genes consistent with induction of cell proliferation in WT mice. However, these gene expression changes did not occur in PXRKO/CARKO or huPXR/huCAR mice. Liver hypertrophy without hyperplasia was demonstrated in the huPXR/huCAR animals in response to both compounds. Induction of the CAR and PXR target genes, Cyp2b10 and Cyp3a11, was observed in both WT and huPXR/huCAR mouse lines following treatment with PB or chlordane. In the PXRKO/CARKO mice, neither liver growth nor induction of Cyp2b10 and Cyp3a11 was seen following PB or chlordane treatment, indicating that these effects are CAR/PXR dependent. These data suggest that the human receptors are able to support the chemically induced hypertrophic responses but not the hyperplastic (cell proliferation) responses. At this time, we cannot be certain that hCAR and hPXR when expressed in the mouse can function exactly as the genes do when they are expressed in human cells. However, all parameters investigated to date suggest that much of their functionality is maintained.


Asunto(s)
Clordano/toxicidad , Neoplasias Hepáticas Experimentales/inducido químicamente , Fenobarbital/toxicidad , Receptores Citoplasmáticos y Nucleares/fisiología , Receptores de Esteroides/fisiología , Animales , Hidrocarburo de Aril Hidroxilasas/biosíntesis , Proliferación Celular/efectos de los fármacos , Receptor de Androstano Constitutivo , Citocromo P-450 CYP3A/biosíntesis , Familia 2 del Citocromo P450 , Humanos , Hiperplasia , Hipertrofia , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas Experimentales/patología , Proteínas de la Membrana/biosíntesis , Ratones , Ratones Endogámicos C57BL , Receptor X de Pregnano , Especificidad de la Especie , Esteroide Hidroxilasas/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...