Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 59
1.
APL Bioeng ; 8(2): 026124, 2024 Jun.
Article En | MEDLINE | ID: mdl-38894961

Point-of-care (POC) testing offers fast and on-site diagnostics and can be crucial against many infectious diseases and in screening. One remaining challenge in serological POC testing is the quantification of immunoglobulin G (IgG) and immunoglobulin M (IgM). Quantification of IgG/IgM can be important to evaluate immunity and to discriminate recent infections from past infections and primary infections from secondary infections. POC tests such as lateral flow immunoassays allow IgG and IgM differentiation; however, a remaining limitation is their incapacity to provide quantitative results. In this work, we show how samples containing IgG or IgM can be distinguished in a nanoparticle-based agglutination biosensing assay by tuning the density of antigens on the nanoparticles' surface. We employ direct STochastic Optical Reconstruction Microscopy to quantify the accessible SARS-CoV-2 trimeric spike proteins conjugated to magnetic nanoparticles at a single-particle level and gain insight into the protein distribution provided by the conjugation procedure. Furthermore, we measure the anti-SARS-CoV-2 IgG/IgM induced agglutination using an optomagnetic readout principle. We show that particles with high antigen density have a relatively higher sensitivity toward IgM compared to IgG, whereas low antigen density provides a relatively higher sensitivity to IgG. The finding paves the way for its implementation for other agglutination-based serology tests, allowing for more accurate disease diagnosis.

2.
Nat Commun ; 15(1): 1020, 2024 Feb 03.
Article En | MEDLINE | ID: mdl-38310097

Understanding the interactions between small, submicrometer-sized colloidal particles is crucial for numerous scientific disciplines and technological applications. In this study, we employ optical tweezers as a powerful tool to investigate these interactions. We utilize a full image reconstruction technique to achieve high precision in characterizing particle pairs that enable nanometer-scale measurement of their positions. This approach captures intricate details and provides a comprehensive understanding of the spatial arrangement between particles, overcoming previous limitations in resolution. Moreover, our research demonstrates that properly accounting for optical binding forces to determine the intrinsic interaction potential is vital. We employ a discrete dipole approximation approach to calculate optical binding potentials and achieve a good agreement between the calculated and observed binding forces. We incorporate the findings from these simulations into the assessment of the intrinsic interaction potentials and validate our methodology by using short-range depletion attraction induced by micelles as an example.

3.
Soft Matter ; 20(7): 1620-1628, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38275297

Colloidal crystals, such as opals, display bright and iridescent colors when assembled from submicron particles. While the brightness and purity of iridescent colors are well suited for ornaments, signaling, and anticounterfeiting, their angle dependence limits the range of their applications. In contrast, colloidal glasses display angle-independent structural color that is tunable by the size and local arrangement of particles. However, the angle-independent color of colloidal photonic glasses usually yields pastel colors that are not vivid due to the disorder in the particle assembly. Here, we report an electrophoretic assembly platform for tuning the level of disorder in the particle system from a colloidal crystal to a colloidal glass. Altering the electric field in our electrophoretic platform allows for deliberate control of the assembly kinetics and thus the level of order in the particle assembly. With the help of microscopy, X-ray scattering, and optical characterization, we show that the photonic properties of the assembled films can be tuned with the applied electric field. Our analyses reveal that angle-independent color with optimum color brightness can be achieved in typical colloidal suspensions when the range of order is at ∼3.2 particle diameters, which is expected at a moderate electric field of ∼15 V mm-1.

4.
Soft Matter ; 19(40): 7717-7723, 2023 Oct 18.
Article En | MEDLINE | ID: mdl-37789800

Color can originate from wavelength-dependence in the absorption of pigments or the scattering of nanostructures. While synthetic colors are dominated by the former, vivid structural colors found in nature have inspired much research on the latter. However, many of the most vibrant colors in nature involve the interactions of structure and pigment. Here, we demonstrate that pigment can be exploited to efficiently create bright structural color at wavelengths outside its absorption band. We created pigment-enhanced Bragg reflectors by sequentially spin-coating layers of poly-vinyl alcohol (PVA) and polystyrene (PS) loaded with ß-carotene (BC). With only 10 double layers, we achieved a peak reflectance over 0.8 at 550 nm and normal incidence. A pigment-free multilayer made of the same materials would require 25 double layers to achieve the same reflectance. Further, pigment loading suppressed the Bragg reflector's characteristic iridescence. Using numerical simulations, we further show that similar pigment loadings could significantly expand the gamut of non-iridescent colors addressable by photonic glasses.

5.
J Colloid Interface Sci ; 649: 1039-1046, 2023 Nov.
Article En | MEDLINE | ID: mdl-37406476

HYPOTHESIS: Understanding how soft colloids, such as food emulsion droplets, transform based on their environment is critical for various applications, including drug and nutrient delivery and biotechnology. However, the mechanisms behind colloidal transformations within individual oil droplets still need to be better understood. EXPERIMENTS: This study employs optical micromanipulation with microfluidics and polarized optical video microscopy to investigate the pancreatic lipase- and pH-triggered colloidal transformations in a single triolein droplet. Small-angle X-ray scattering (SAXS) provides complementary statistical insights and allows for detailed structural assignment. FINDINGS: Optical video microscopy recorded the transformation of individual triolein emulsion droplets, with the smooth surface of these spherical particles becoming rough and the entire volume eventually being affected. The polarized microscopy revealed the coexistence of at least two distinct structures in a single particle during digestion, with their ratio and distribution altered by pH. The SAXS analysis assigned the optical anisotropy to emulsified inverse hexagonal- and multilamellar phases, coexisting with isotropic structures such as the micellar cubic phase. These results can help understand the phase transformations inside an emulsion droplet during triglyceride digestion and guide the design of advanced food emulsions.

6.
Opt Express ; 31(11): 18509-18515, 2023 May 22.
Article En | MEDLINE | ID: mdl-37381560

We numerically study the statistical fluctuations of photonic band gaps in ensembles of stealthy hyperuniform disordered patterns. We find that at low stealthiness, where correlations are weak, band gaps of different system realizations appear over a wide frequency range, are narrow, and generally do not overlap. Interestingly, above a critical value of stealthiness χ≳0.35, the bandgaps become large and overlap significantly from realization to realization, while a second gap appears. These observations extend our understanding of photonic bandgaps in disordered systems and provide information on the robustness of gaps in practical applications.

7.
ACS Nano ; 17(3): 2067-2078, 2023 Feb 14.
Article En | MEDLINE | ID: mdl-36656959

Super-resolution microscopy has become a powerful tool to investigate the internal structure of complex colloidal and polymeric systems, such as microgels, at the nanometer scale. An interesting feature of this method is the possibility of monitoring microgel response to temperature changes in situ. However, when performing advanced microscopy experiments, interactions between the particle and the environment can be important. Often microgels are deposited on a substrate, since they have to remain still for several minutes during the experiment. This study uses direct stochastic optical reconstruction microscopy (dSTORM) and advanced coarse-grained molecular dynamics simulations to investigate how individual microgels anchored on hydrophilic and hydrophobic surfaces undergo their volume phase transition with temperature. We find that, in the presence of a hydrophilic substrate, the structure of the microgel is unperturbed and the resulting density profiles quantitatively agree with simulations performed under bulk conditions. Instead, when a hydrophobic surface is used, the microgel spreads at the interface and an interesting competition between the two hydrophobic strengths,monomer-monomer vs monomer-surface,comes into play at high temperatures. The robust agreement between experiments and simulations makes the present study a fundamental step to establish this high-resolution monitoring technique as a platform for investigating more complex systems, these being either macromolecules with peculiar internal structure or nanocomplexes where molecules of interest can be encapsulated in the microgel network and controllably released with temperature.

8.
Opt Express ; 30(17): 30991-31001, 2022 Aug 15.
Article En | MEDLINE | ID: mdl-36242192

We present a laser-speckle imaging technique, termed Echo speckle imaging (ESI), that quantifies the local dynamics in biological tissue and soft materials with a noise level around or below 10% of the measured signal without affecting the spatial resolution. We achieve this through an unconventional speckle beam illumination that creates changing, statistically independent illumination conditions and substantially increases the measurement accuracy. Control experiments for dynamically homogeneous and heterogeneous soft materials and tissue phantoms illustrate the performance of the method. We show that this approach enables us to precision-monitor purely dynamic heterogeneities in turbid soft media with a lateral resolution of 100 µm and better.


Diagnostic Imaging , Lighting , Phantoms, Imaging
9.
Phys Rev Lett ; 129(15): 157402, 2022 Oct 07.
Article En | MEDLINE | ID: mdl-36269948

We propose a framework that unifies the description of light transmission through three-dimensional amorphous dielectric materials that exhibit both localization and a photonic bandgap. We argue that direct, coherent reflection near and in the bandgap attenuates the generation of diffuse or localized photons. Using the self-consistent theory of localization and considering the density of states of photons, we can quantitatively describe the total transmission of light for all transport regimes: transparency, light diffusion, localization, and bandgap. Comparison with numerical simulations of light transport through hyperuniform networks supports our theoretical approach.

10.
ACS Photonics ; 9(8): 2809-2816, 2022 Aug 17.
Article En | MEDLINE | ID: mdl-35996372

Structurally colored materials offer increased stability, high biocompatibility, and a large variety of colors, which can hardly be reached simultaneously using conventional chemical pigments. However, for practical applications, such as inkjet printing, it is vital to compartmentalize these materials in small building blocks (with sizes ideally below 5 µm) and create "ready-to-use" inks. The latter can be achieved by using photonic balls (PB): spherical aggregates of nanoparticles. Here, we demonstrate, for the first time, how photonic ball dispersions can be used as inkjet printing inks. We use solvent drying techniques to manufacture structurally colored colloidal aggregates. The as-fabricated photonic balls are dispersed in pentanol to form ink. A custom-made inkjet printing platform equipped with an industrial printhead and recirculation fluidic system is used to print complex structurally colored patterns. We increase color purity and suppress multiple scattering by introducing carbon black as a broadband light absorber.

11.
Nat Mater ; 21(9): 994-995, 2022 Sep.
Article En | MEDLINE | ID: mdl-36002722
12.
J Colloid Interface Sci ; 627: 610-620, 2022 Dec.
Article En | MEDLINE | ID: mdl-35872418

HYPOTHESIS: Soft colloidal particles that respond to their environment have innovative potential for many fields ranging from food and health to biotechnology and oil recovery. The in situ characterisation of colloidal transformations that triggers the functional response remain a challenge. EXPERIMENTS: This study demonstrates the combination of an optical micromanipulation platform, polarized optical video microscopy and microfluidics in a comprehensive approach for the analysis of pH-driven structural transformations in emulsions. The new platform, together with synchrotron small angle X-ray scattering, was then applied to research the food-relevant, pH-responsive, oleic acid in water system. FINDINGS: The experiments demonstrate structural transformations in individual oleic acid particles from micron-sized onion-type multilamellar oleic acid vesicles at pH 8.6, to nanostructured emulsions at pH < 8.0, and eventually oil droplets at pH < 6.5. The smooth particle-water interface of the onion-type vesicles at pH 8.6 was transformed into a rough particle surface at pH below 7.5. The pH-triggered changes of the interfacial tension at the droplet-water interface together with mass transport owing to structural transformations induced a self-propelled motion of the particle. The results of this study contribute to the fundamental understanding of the structure-property relationship in pH-responsive emulsions for nutrient and drug delivery applications.


Oleic Acid , Water , Emulsions/chemistry , Hydrogen-Ion Concentration , Oleic Acid/chemistry , Optical Tweezers , Water/chemistry
13.
Nat Commun ; 13(1): 4397, 2022 Jul 29.
Article En | MEDLINE | ID: mdl-35906208

Structural color is frequently exploited by living organisms for biological functions and has also been translated into synthetic materials as a more durable and less hazardous alternative to conventional pigments. Additive manufacturing approaches were recently exploited for the fabrication of exquisite photonic objects, but the angle-dependence observed limits a broader application of structural color in synthetic systems. Here, we propose a manufacturing platform for the 3D printing of complex-shaped objects that display isotropic structural color generated from photonic colloidal glasses. Structurally colored objects are printed from aqueous colloidal inks containing monodisperse silica particles, carbon black, and a gel-forming copolymer. Rheology and Small-Angle-X-Ray-Scattering measurements are performed to identify the processing conditions leading to printed objects with tunable structural colors. Multimaterial printing is eventually used to create complex-shaped objects with multiple structural colors using silica and carbon as abundant and sustainable building blocks.

14.
ACS Macro Lett ; 11(1): 84-90, 2022 01 18.
Article En | MEDLINE | ID: mdl-35574786

The entanglement dynamics and viscoelasticity of polyelectrolyte solutions remain active research topics. Previous studies have reported conflicting experimental results when compared to Dobrynin's scaling predictions derived from the Doi-Edwards (DE) tube model for entangled polymers. Herein, by combining classical bulk shear rheometry with diffusing wave spectroscopy (DWS) microrheometry, we investigate how the key viscoelastic parameters (the specific viscosity ηsp, the plateau modulus Ge, and the ratio of the reptation time to the Rouse time of an entanglement strand τrep/τe) depend on the polymer concentration for semidilute entangled (SE) solutions containing poly(sodium styrenesulfonate) with high molecular weight. Our experimental measurements yield Ge ∝ c1.51±0.04, in good agreement with the scaling of Ge ∝ c1.5 predicted by Dobrynin's model for salt-free polyelectrolyte SE solutions, suggesting that the electrostatic interaction influences the viscoelastic properties of polyelectrolyte SE solutions. On the other hand, the deviation in the scaling exponent for ηsp ∝ c2.56±0.04 and τrep/τe ∝ c1.82±0.28 is observed between our DWS experiments and Dobrynin's model prediction (∝ c1.5), likely due to the fact that Dobrynin's scaling model does not account for mechanisms such as the contour length fluctuation, the constraint release, and the retardation of solvent dynamics, which are known to occur for SE solutions of neutral polymers. Our results demonstrate that DWS serves as a powerful rheological tool to study the entanglement dynamics of polyelectrolyte solutions. The scaling relationships obtained in this study provide new insights to the long-standing debate on the entanglement dynamics of polyelectrolyte solutions.


Polymers , Molecular Weight , Polyelectrolytes , Polymers/chemistry , Rheology , Viscosity
15.
Opt Lett ; 47(7): 1838, 2022 Apr 01.
Article En | MEDLINE | ID: mdl-35363748

This publisher's note contains a correction to Opt. Lett.47, 1439 (2022)10.1364/OL.449084.

16.
Opt Lett ; 47(6): 1439-1441, 2022 Mar 15.
Article En | MEDLINE | ID: mdl-35290333

Frequency-dependent intensity correlation function measurements can be employed to determine the optical turbidity of solid disordered dielectrics. Here we demonstrate a speckle frequency correlation experiment with a focused beam and using an area detector. We show how to apply frequency correlation measurements to optically thin solid samples with the aim of determining the light diffusion coefficient and transport mean free path ℓ*. To give a practical example, we extract the optical transport mean free path of PTFE (Teflon) slabs, with a thickness of L = 0.4-3.5 mm, covering optical densities L/ℓ* ∼ 4-15.

17.
Small Methods ; 6(4): e2101491, 2022 04.
Article En | MEDLINE | ID: mdl-35218331

Macroporous materials with controlled pore sizes are of high scientific and technological interest, due to their low specific weight, as well as unique acoustic, thermal, or optical properties. Solid foams made of titania, silica, or silicon, as representative materials, have been previously obtained with several hundred nanometer pore sizes, by using sacrificial templates such as spherical emulsion droplets or colloidal particles. Macroporous structures in particular are excellent candidates as photonic materials with applications in structural coloration and photonic bandgap devices. However, whereas using spherical building blocks as templates may provide tight control over pore shape and size, it results in materials with an often unfavorable local topology. Templating dry-foam or compressed-emulsion structures appear as attractive alternatives, but have not been demonstrated so far for submicron pore sizes. Herein, the use of soft, flexible microgel colloids decorated with silica nanoparticles as templates of macroporous foams is reported. These purposely synthesized core-shell colloids are assembled at ultra-high effective volume fractions by centrifuging and thermal swelling, thereby resulting in uniform disordered materials with facetted pores, mimicking dry foams. After removal of the polymer component via calcination, lightweight pure silica structures are obtained with a well-defined cellular or network topology.


Nanoparticles , Silicon Dioxide , Aerosols , Colloids/chemistry , Emulsions , Nanoparticles/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry
18.
Small ; 17(44): e2103061, 2021 11.
Article En | MEDLINE | ID: mdl-34558188

Polymers are essential components of many nanostructured materials. However, the refractive indices of common polymers fall in a relatively narrow range between 1.4 and 1.6. Here, it is demonstrated that loading commercially-available polymers with large concentrations of a plant-based pigment can effectively enhance their refractive index. For polystyrene (PS) loaded with 67 w/w% ß-carotene (BC), a peak value of 2.2 near the absorption edge at 531 nm is achieved, while maintaining values above 1.75 across longer wavelengths of the visible spectrum. Despite high pigment loadings, this blend maintains the thermoforming ability of PS, and BC remains molecularly dispersed. Similar results are demonstrated for the plant-derived polymer ethyl cellulose (EC). Since the refractive index enhancement is intimately connected to the introduction of strong absorption, it is best suited to applications where light travels short distances through the material, such as reflectors and nanophotonic systems. Enhanced reflectance from films is experimentally demonstrated, as large as sevenfold for EC at selected wavelengths. Theoretical calculations highlight that this simple strategy can significantly increase light scattering by nanoparticles and enhance the performance of Bragg reflectors.


Nanoparticles , Nanostructures , Polymers , Polystyrenes , Refractometry
19.
Opt Express ; 29(10): 14367-14383, 2021 May 10.
Article En | MEDLINE | ID: mdl-33985161

Disordered dielectrics with structural correlations on length scales comparable to visible light wavelengths exhibit interesting optical properties. Such materials exist in nature, leading to beautiful structural non-iridescent color, and they are also increasingly used as building blocks for optical materials and coatings. In this article, we explore the angular resolved single-scattering properties of micron-sized, disordered colloidal assemblies. The aggregates act as structurally colored supraparticles or as building blocks for macroscopic photonic glasses. We obtain first experimental data for the differential scattering and transport cross-section. Based on existing macroscopic models, we develop a theoretical framework to describe the scattering from densely packed colloidal assemblies on a hierarchy of length scales.

20.
J Phys Condens Matter ; 33(17)2021 Apr 21.
Article En | MEDLINE | ID: mdl-33513598

We show that diffusing wave spectroscopy (DWS) is sensitive to the presence of a moderate short-range attraction between droplets in uniform fractionated colloidal emulsions near and below the jamming point associated with monodisperse hard spheres. This moderate interdroplet attraction, induced by micellar depletion, has an energy of about ∼2.4kBT, only somewhat larger than thermal energy. Although changes in the mean free path of optical transport caused by this moderate depletion attraction are small, DWS clearly reveals an additional secondary decay-to-plateau in the intensity autocorrelation function at long times that is not present when droplet interactions are nearly hard. We hypothesize that this secondary decay-to-plateau does not reflect the average self-motion of individual droplets experiencing Brownian excitations, but instead results from heterogeneous dynamics involving a sub-population of droplets that still experience bound motion yet with significantly larger displacements than the average. By effectively removing the contribution of this secondary decay-to-plateau, which is linked to greater local heterogeneity in droplet structure caused by the moderate attraction, we obtain self-motion mean square displacements (MSDs) of droplets that reflect only the initial primary decay-to-plateau. Moreover, we show that droplet self-motion primary plateau MSDs can be interpreted using the generalized Stokes-Einstein relation of passive microrheology, yielding quantitative agreement with plateau elastic shear moduli measured mechanically.

...