Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 130(8): 4118-4132, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32597833

RESUMEN

Lysosomal enzymes are synthesized in the endoplasmic reticulum (ER) and transferred to the Golgi complex by interaction with the Batten disease protein CLN8 (ceroid lipofuscinosis, neuronal, 8). Here we investigated the relationship of this pathway with CLN6, an ER-associated protein of unknown function that is defective in a different Batten disease subtype. Experiments focused on protein interaction and trafficking identified CLN6 as an obligate component of a CLN6-CLN8 complex (herein referred to as EGRESS: ER-to-Golgi relaying of enzymes of the lysosomal system), which recruits lysosomal enzymes at the ER to promote their Golgi transfer. Mutagenesis experiments showed that the second luminal loop of CLN6 is required for the interaction of CLN6 with the enzymes but dispensable for interaction with CLN8. In vitro and in vivo studies showed that CLN6 deficiency results in inefficient ER export of lysosomal enzymes and diminished levels of the enzymes at the lysosome. Mice lacking both CLN6 and CLN8 did not display aggravated pathology compared with the single deficiencies, indicating that the EGRESS complex works as a functional unit. These results identify CLN6 and the EGRESS complex as key players in lysosome biogenesis and shed light on the molecular etiology of Batten disease caused by defects in CLN6.


Asunto(s)
Retículo Endoplásmico/enzimología , Aparato de Golgi/enzimología , Lisosomas/enzimología , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Animales , Retículo Endoplásmico/genética , Aparato de Golgi/genética , Lisosomas/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Complejos Multiproteicos/genética , Lipofuscinosis Ceroideas Neuronales/enzimología , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Transporte de Proteínas/genética
3.
J Cell Biol ; 179(5): 951-63, 2007 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-18056412

RESUMEN

Gamma-Secretase is responsible for proteolytic maturation of signaling and cell surface proteins, including amyloid precursor protein (APP). Abnormal processing of APP by gamma-secretase produces a fragment, Abeta(42), that may be responsible for Alzheimer's disease (AD). The biogenesis and trafficking of this important enzyme in relation to aberrant Abeta processing is not well defined. Using a cell-free reaction to monitor the exit of cargo proteins from the endoplasmic reticulum (ER), we have isolated a transient intermediate of gamma-secretase. Here, we provide direct evidence that the gamma-secretase complex is formed in an inactive complex at or before the assembly of an ER transport vesicle dependent on the COPII sorting subunit, Sec24A. Maturation of the holoenzyme is achieved in a subsequent compartment. Two familial AD (FAD)-linked PS1 variants are inefficiently packaged into transport vesicles generated from the ER. Our results suggest that aberrant trafficking of PS1 may contribute to disease pathology.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/biosíntesis , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Células CHO , Vesículas Cubiertas por Proteínas de Revestimiento/efectos de los fármacos , Vesículas Cubiertas por Proteínas de Revestimiento/enzimología , Línea Celular , Cricetinae , Cricetulus , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Humanos , Metilaminas/farmacología , Proteínas Mutantes/metabolismo , Presenilina-1/biosíntesis , Transporte de Proteínas/efectos de los fármacos , Ratas , Proteínas de Transporte Vesicular/metabolismo
4.
Mol Biol Cell ; 13(12): 4296-307, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12475953

RESUMEN

Clathrin-coated vesicles mediate the transport of the soluble vacuolar protein CPY from the TGN to the endosomal/prevacuolar compartment. Surprisingly, CPY sorting is not affected in clathrin deletion mutant cells. Here, we have investigated the clathrin-independent pathway that allows CPY transport to the vacuole. We find that CPY transport is mediated by the endosome and requires normal trafficking of its sorting receptor, Vps10p, the steady state distribution of which is not altered in chc1 cells. In contrast, Vps10p accumulates at the cell surface in a chc1/end3 double mutant, suggesting that Vps10p is rerouted to the cell surface in the absence of clathrin. We used a chimeric protein containing the first 50 amino acids of CPY fused to a green fluorescent protein (CPY-GFP) to mimic CPY transport in chc1. In the absence of clathrin, CPY-GFP resides in the lumen of the vacuole as in wild-type cells. However, in chc1/sec6 double mutants, CPY-GFP is present in internal structures, possibly endosomal membranes, that do not colocalize with the vacuole. We propose that Vps10p must be transported to and retrieved from the plasma membrane to mediate CPY sorting to the vacuole in the absence of clathrin-coated vesicles. In this circumstance, precursor CPY may be captured by retrieved Vps10p in an early or late endosome, rather than as it normally is in the trans-Golgi, and delivered to the vacuole by the normal VPS gene-dependent process. Once relieved of cargo protein, Vps10p would be recycled to the trans-Golgi and then to the cell surface for further rounds of sorting.


Asunto(s)
Membrana Celular/metabolismo , Clatrina/genética , Endosomas/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular , Red trans-Golgi/metabolismo , ADN/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Genotipo , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes , Immunoblotting , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Mutación , Plásmidos/metabolismo , Pruebas de Precipitina , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Fracciones Subcelulares , Factores de Tiempo
5.
Dev Cell ; 2(3): 283-94, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11879634

RESUMEN

In yeast, certain resident trans-Golgi network (TGN) proteins achieve steady-state localization by cycling through late endosomes. Here, we show that chitin synthase III (Chs3p), an enzyme involved in the assembly of the cell wall at the mother-bud junction, populates an intracellular reservoir that is maintained by a cycle of transport between the TGN and early endosomes. Traffic of Chs3p from the TGN/early endosome to the cell surface requires CHS5 and CHS6, mutant alleles of which trap Chs3p in the TGN/early endosome. Disruption of the clathrin adaptor protein complex 1 (AP-1) restores Chs3p transport to the plasma membrane. Similarly, in AP-1 deficient cells, the resident TGN/early endosome syntaxin, Tlg1p, is missorted. We propose that clathrin and AP-1 act to recycle Chs3p and Tlg1p from the early endosome to the TGN.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Quitina Sintasa/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Red trans-Golgi/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Endosomas/metabolismo , Regulación Fúngica de la Expresión Génica , Mutación/fisiología , Transporte de Proteínas/fisiología , Proteínas Qa-SNARE , Saccharomyces cerevisiae , Vesículas Secretoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...