Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Curr Oncol ; 31(4): 1762-1773, 2024 03 29.
Article En | MEDLINE | ID: mdl-38668037

Myelodysplastic neoplasms (MDS) with ring sideroblasts (RS) are diagnosed via bone marrow aspiration in the presence of either (i) ≥15% RS or (ii) 5-14% RS and an SF3B1 mutation. In the MEDALIST trial and in an interim analysis of the COMMANDS trial, lower-risk MDS-RS patients had decreased transfusion dependency with luspatercept treatment. A total of 6817 patients with suspected hematologic malignancies underwent molecular testing using a next-generation-sequencing-based genetic assay and 395 MDS patients, seen at our centre from 1 January 2018 to 31 May 2023, were reviewed. Of these, we identified 39 evaluable patients as having lower-risk MDS with SF3B1 mutations: there were 20 (51.3%) males and 19 (48.7%) females, with a median age of 77 years (range of 57 to 92). Nineteen (48.7%) patients had an isolated SF3B1 mutation with a mean variant allele frequency of 35.2% +/- 8.1%, ranging from 7.4% to 46.0%. There were 29 (74.4%) patients with ≥15% RS, 6 (15.4%) with 5 to 14% RS, one (2.6%) with 1% RS, and 3 (7.7%) with no RS. Our study suggests that a quarter of patients would be missed based on the morphologic criterion of only using RS greater than 15% and supports the revised 2022 definitions of the World Health Organization (WHO) and International Consensus Classification (ICC), which shift toward molecularly defined subtypes of MDS and appropriate testing.


Mutation , Myelodysplastic Syndromes , Phosphoproteins , RNA Splicing Factors , World Health Organization , Humans , RNA Splicing Factors/genetics , Male , Female , Aged , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/classification , Middle Aged , Retrospective Studies , Aged, 80 and over , Phosphoproteins/genetics , Anemia, Sideroblastic/genetics
2.
Adv Hematol ; 2024: 3056216, 2024.
Article En | MEDLINE | ID: mdl-38375212

Background: Thrombocytosis is a common reason for referral to Hematology. Differentiating between secondary causes of thrombocytosis and essential thrombocythemia (ET) is often clinically challenging. A practical diagnostic approach to identify secondary thrombocytosis could reduce overinvestigation such as next generation sequencing (NGS) panel. Methods and Results: All adult patients with thrombocytosis (≥450 × 109/L) who underwent molecular testing at a single tertiary care centre between January 1, 2018 and May 31, 2021 were evaluated. Clinical and laboratory variables were compared between patients with secondary thrombocytosis vs. ET. Clinical variables included smoking, thrombosis, splenectomy, active malignancy, chronic inflammatory disease, and iron deficiency anemia. Laboratory variables included complete blood count (CBC), ferritin, and myeloid mutations detected by NGS. The overall yield of molecular testing was 52.4%; 92.1% of which were mutations in JAK2, CALR, and/or MPL. Clinical factors predictive of ET included history of arterial thrombosis (p < 0.05); active malignancy, chronic inflammatory disease, splenectomy, and iron deficiency were associated with secondary thrombocytosis (p < 0.05). A diagnosis of ET was associated with higher hemoglobin, mean corpuscular volume (MCV), red cell distribution width (RDW), and mean platelet volume (MPV), while secondary thrombocytosis was associated with higher body mass index, white blood cells, and neutrophils (p < 0.01). Conclusion: A practical approach to investigating patients with persistent thrombocytosis based on clinical characteristics such as active malignancy, chronic inflammatory disease, splenectomy, and iron deficiency may assist in accurately identifying patients more likely to have secondary causes of thrombocytosis and reduce overinvestigation, particularly costly molecular testing.

3.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article En | MEDLINE | ID: mdl-37834053

Epilepsy is a highly prevalent neurological disorder, affecting between 5-8 per 1000 individuals and is associated with a lifetime risk of up to 3%. In addition to high incidence, epilepsy is a highly heterogeneous disorder, with variation including, but not limited to the following: severity, age of onset, type of seizure, developmental delay, drug responsiveness, and other comorbidities. Variable phenotypes are reflected in a range of etiologies including genetic, infectious, metabolic, immune, acquired/structural (resulting from, for example, a severe head injury or stroke), or idiopathic. This review will focus specifically on epilepsies with a genetic cause, genetic testing, and biomarkers in epilepsy.


Epilepsy , Stroke , Humans , Epilepsy/etiology , Seizures/genetics , Genetic Testing , Comorbidity , Stroke/genetics
4.
Curr Oncol ; 30(10): 9039-9048, 2023 10 06.
Article En | MEDLINE | ID: mdl-37887553

We present a fascinating case of a 57-year-old male with a novel mutation in MLH1 (MLH1:c.1288G > T, p.(Glu430*)), who presented with two synchronous colonic tumours, initially deemed unresectable, and experienced a complete pathological response on neoadjuvant pembrolizumab. Extensive genetic testing revealed post-zygotic mosaicism from the novel mutation.


Colonic Neoplasms , Mosaicism , Neoadjuvant Therapy , Humans , Male , Middle Aged , Microsatellite Instability , Mutation , MutL Protein Homolog 1/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics
6.
Expert Rev Mol Diagn ; 23(9): 827-841, 2023.
Article En | MEDLINE | ID: mdl-37542410

BACKGROUND: Comprehensive molecular diagnostics are highly dependent on the technical performance of next-generation sequencing (NGS) pipelines, which are assessed by data quality, cost, turnaround time, and accuracy of detecting a range of sequence and copy number variants. METHODS: A dataset of 285 clinically validated cases (205 retrospective and 80 prospective), carrying complex sequence and copy number variants and thousands of genetic polymorphisms underwent a clinical validation of the KAPA HyperChoice target enrichment system with parallel sample fidelity assessment across a number of NGS panels. The analysis included assessment of peripheral blood, urine, muscle and FFPE tissues. RESULTS: High-quality and exceptionally uniform data with 100% coverage of all targeted panels were obtained, resulting in complete sensitivity and specificity for all variant types across nearly all panels and tissue types. Overall reduction in cost and turnaround times was obtained with the implementation of a parallel genotyping sample fidelity system. CONCLUSION: Results of the laboratory quality improvement study focused on a single NGS pipeline that includes both nuclear and mitochondrial genomes demonstrated utility in the clinical setting to assess a range of referral reasons, necessary due to the complex molecular etiology of human genetic disorders, while reducing costs and turnaround times.


DNA Copy Number Variations , High-Throughput Nucleotide Sequencing , Humans , Retrospective Studies , Prospective Studies , High-Throughput Nucleotide Sequencing/methods , Germ Cells
7.
J Mol Med (Berl) ; 101(8): 1029-1040, 2023 08.
Article En | MEDLINE | ID: mdl-37466676

Atypical hemolytic uremic syndrome (aHUS) is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal impairment. Complement and coagulation gene variants have been associated with aHUS susceptibility. We assessed the diagnostic yield of a next-generation sequencing (NGS) panel in a large cohort of Canadian patients with suspected aHUS. Molecular testing was performed on peripheral blood DNA samples from 167 patients, collected between May 2019 and December 2021, using a clinically validated NGS pipeline. Coding exons with 20 base pairs of flanking intronic regions for 21 aHUS-associated or candidate genes were enriched using a custom hybridization protocol. All sequence and copy number variants were assessed and classified following American College of Medical Genetics guidelines. Molecular diagnostic results were reported for four variants in three individuals (1.8%). Twenty-seven variants of unknown significance were identified in 25 (15%) patients, and 34 unique variants in candidate genes were identified in 28 individuals. An illustrative patient case describing two genetic alterations in complement genes is presented, highlighting that variable expressivity and incomplete penetrance must be considered when interpreting genetic data in patients with complement-mediated disease, alongside the potential additive effects of genetic variants on aHUS pathophysiology. In this cohort of patients with suspected aHUS, using clinical pipelines for genetic testing and variant classification, pathogenic/likely pathogenic variants occurred in a very small percentage of patients. Our results highlight the ongoing challenges in variant classification following NGS panel testing in patients with suspected aHUS, alongside the need for clear testing guidance in the clinical setting. KEY MESSAGES: • Clinical molecular testing for disease associated genes in aHUS is challenging. • Challenges include patient selection criteria, test validation, and interpretation. • Most variants were of uncertain significance (31.7% of patients; VUS + candidates). • Their clinical significance may be elucidated as more evidence becomes available.  • Low molecular diagnostic rate (1.8%), perhaps due to strict classification criteria. • Case study identified two likely pathogenic variants; one each in MCP/CD46 and CFI.


Atypical Hemolytic Uremic Syndrome , Genotype , Mutation , Humans , Male , Female , Adult , Middle Aged , Patient Selection , Atypical Hemolytic Uremic Syndrome/diagnosis , Atypical Hemolytic Uremic Syndrome/genetics , Cohort Studies , Reproducibility of Results , Uncertainty
8.
Genes (Basel) ; 13(11)2022 11 09.
Article En | MEDLINE | ID: mdl-36360312

Molecular biomarkers, such as IDH1/IDH2 mutations and 1p19q co-deletion, are included in the histopathological and clinical criteria currently used to diagnose and classify gliomas. IDH1/IDH2 mutation is a common feature of gliomas and is associated with a glioma-CpG island methylator phenotype (CIMP). Aberrant genomic methylation patterns can also be used to extrapolate information about copy number variation in a tumor. This project's goal was to assess the feasibility of DNA methylation array for the simultaneous detection of glioma biomarkers as a more effective testing strategy compared to existing single analyte tests. METHODS: Whole-genome methylation array (WGMA) testing was performed using 48 glioma DNA samples to detect methylation aberrations and chromosomal gains and losses. The analyzed samples include 39 tumors in the discovery cohort and 9 tumors in the replication cohort. Methylation profiles for each sample were correlated with IDH1 p.R132G mutation, immunohistochemistry (IHC), and previous 1p19q clinical testing to assess the sensitivity and specificity of the WGMA assay for the detection of these variants. RESULTS: We developed a DNA methylation signature to specifically distinguish a IDH1/IDH2 mutant tumor from normal samples. This signature is composed of 11 CpG sites that were significantly hypermethylated in the IDH1/IDH2 mutant group. Copy number analysis using WGMA data was able to identify five of five positive samples for 1p19q co-deletion and was concordant for all negative samples. CONCLUSIONS: The DNA methylation signature presented here has the potential to refine the utility of WGMA to predict IDH1/IDH2 mutation status of gliomas, thus improving diagnostic yield and efficiency of laboratory testing compared to single analyte IDH1/IDH2 or 1p19q tests.


Brain Neoplasms , Glioma , Humans , Isocitrate Dehydrogenase/genetics , DNA Methylation/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , DNA Copy Number Variations/genetics , Mutation , Glioma/diagnosis , Glioma/genetics , Glioma/pathology
9.
Mol Diagn Ther ; 26(3): 333-343, 2022 05.
Article En | MEDLINE | ID: mdl-35381971

BACKGROUND: The use of molecular genetic biomarkers is rapidly advancing to aid diagnosis, prognosis, and clinical management of hematological disorders. We have implemented a next-generation sequencing (NGS) assay for detection of genetic variants and fusions as a frontline test for patients suspected with myeloid malignancy. In this study, we summarize the findings and assess the clinical impact in the first 1613 patients tested. METHODS: All patients were assessed using NGS based Oncomine Myeloid Research Assay (ThermoFisher) including 40 genes (17 full genes and 23 genes with clinically relevant "hotspot" regions), along with a panel of 29 fusion driver genes (including over fusion 600 partners). RESULTS: Among 1613 patients with suspected myeloid malignancy, 43% patients harbored at least one clinically relevant variant: 91% (90/100) in acute myeloid leukemia patients, 71.7% (160/223) in myelodysplastic syndrome (MDS), 77.5% (308/397) in myeloproliferative neoplasm (MPN), 83% (34/41) in MPN/MDS, and 100% (40/40) in chronic myeloid leukemia patients. Comparison of NGS and cytogenetics results revealed a high degree of concordance in gene fusion detection. CONCLUSIONS: Our findings demonstrate clinical utility and feasibility of integrating a NGS-based gene mutation and fusion testing assay as a frontline diagnostic test in a large reported cohort of patients with suspected myeloid malignancy, in a clinical laboratory setting. Overlap with cytogenetic test results provides opportunity for testing reduction and streamlining.


Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Myeloproliferative Disorders , DNA , Gene Fusion , High-Throughput Nucleotide Sequencing/methods , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Mutation , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/genetics , RNA
10.
Front Genet ; 12: 698595, 2021.
Article En | MEDLINE | ID: mdl-34326862

BACKGROUND: Hereditary cancer predisposition syndromes account for approximately 10% of cancer cases. Next generation sequencing (NGS) based multi-gene targeted panels is now a frontline approach to identify pathogenic mutations in cancer predisposition genes in high-risk families. Recent evolvement of NGS technologies have allowed simultaneous detection of sequence and copy number variants (CNVs) using a single platform. In this study, we have analyzed frequency and nature of sequence variants and CNVs, in a Canadian cohort of patients, suspected with hereditary cancer syndrome, referred for genetic testing following specific genetic testing guidelines based on patient's personal and/or family history of cancer. METHODS: A 2870 patients were subjected to a single NGS based multi-gene targeted hereditary cancer panel testing algorithm to identify sequence variants and CNVs in cancer predisposition genes at our reference laboratory in Southwestern Ontario. CNVs identified by NGS were confirmed by alternative techniques like Multiplex ligation-dependent probe amplification (MLPA). RESULTS: A 15% (431/2870) patients had a pathogenic variant and 36% (1032/2870) had a variant of unknown significance (VUS), in a cancer susceptibility gene. A total of 287 unique pathogenic variant were identified, out of which 23 (8%) were novel. CNVs identified by NGS based approach accounted for 9.5% (27/287) of pathogenic variants, confirmed by alternate techniques with high accuracy. CONCLUSION: This study emphasizes the utility of NGS based targeted testing approach to identify both sequence and CNVs in patients suspected with hereditary cancer syndromes in clinical setting and expands the mutational spectrum of high and moderate penetrance cancer predisposition genes.

12.
Genet Med ; 23(6): 1065-1074, 2021 06.
Article En | MEDLINE | ID: mdl-33547396

PURPOSE: We describe the clinical implementation of genome-wide DNA methylation analysis in rare disorders across the EpiSign diagnostic laboratory network and the assessment of results and clinical impact in the first subjects tested. METHODS: We outline the logistics and data flow between an integrated network of clinical diagnostics laboratories in Europe, the United States, and Canada. We describe the clinical validation of EpiSign using 211 specimens and assess the test performance and diagnostic yield in the first 207 subjects tested involving two patient subgroups: the targeted cohort (subjects with previous ambiguous/inconclusive genetic findings including genetic variants of unknown clinical significance) and the screening cohort (subjects with clinical findings consistent with hereditary neurodevelopmental syndromes and no previous conclusive genetic findings). RESULTS: Among the 207 subjects tested, 57 (27.6%) were positive for a diagnostic episignature including 48/136 (35.3%) in the targeted cohort and 8/71 (11.3%) in the screening cohort, with 4/207 (1.9%) remaining inconclusive after EpiSign analysis. CONCLUSION: This study describes the implementation of diagnostic clinical genomic DNA methylation testing in patients with rare disorders. It provides strong evidence of clinical utility of EpiSign analysis, including the ability to provide conclusive findings in the majority of subjects tested.


DNA Methylation , Epigenomics , Canada , Europe , Humans , Syndrome
13.
Nat Commun ; 9(1): 4885, 2018 11 20.
Article En | MEDLINE | ID: mdl-30459321

Coffin-Siris and Nicolaides-Baraitser syndromes (CSS and NCBRS) are Mendelian disorders caused by mutations in subunits of the BAF chromatin remodeling complex. We report overlapping peripheral blood DNA methylation epi-signatures in individuals with various subtypes of CSS (ARID1B, SMARCB1, and SMARCA4) and NCBRS (SMARCA2). We demonstrate that the degree of similarity in the epi-signatures of some CSS subtypes and NCBRS can be greater than that within CSS, indicating a link in the functional basis of the two syndromes. We show that chromosome 6q25 microdeletion syndrome, harboring ARID1B deletions, exhibits a similar CSS/NCBRS methylation profile. Specificity of this epi-signature was confirmed across a wide range of neurodevelopmental conditions including other chromatin remodeling and epigenetic machinery disorders. We demonstrate that a machine-learning model trained on this DNA methylation profile can resolve ambiguous clinical cases, reclassify those with variants of unknown significance, and identify previously undiagnosed subjects through targeted population screening.


Abnormalities, Multiple/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA Methylation , Transcription Factors/genetics , Abnormalities, Multiple/diagnosis , Chromatin Assembly and Disassembly , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Epigenesis, Genetic , Epigenomics , Face/abnormalities , Facies , Foot Deformities, Congenital/diagnosis , Foot Deformities, Congenital/genetics , Hand Deformities, Congenital/diagnosis , Hand Deformities, Congenital/genetics , Humans , Hypotrichosis/diagnosis , Hypotrichosis/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Micrognathism/diagnosis , Micrognathism/genetics , Mutation , Neck/abnormalities , Nuclear Proteins/genetics , SMARCB1 Protein/genetics , Syndrome
14.
Front Oncol ; 8: 100, 2018.
Article En | MEDLINE | ID: mdl-29740534

INTRODUCTION: The current methodology involving diagnosis of prostate cancer (PCa) relies on the pathology examination of prostate needle biopsies, a method with high false negative rates partly due to temporospatial, molecular, and morphological heterogeneity of prostate adenocarcinoma. It is postulated that molecular markers have a potential to assign diagnosis to a considerable portion of undetected prostate tumors. This study examines the genome-wide DNA methylation changes in PCa in search of genomic markers for the development of a diagnostic algorithm for PCa screening. METHODS: Archival PCa and normal tissues were assessed using genomic DNA methylation arrays. Differentially methylated sites and regions (DMRs) were used for functional assessment, gene-set enrichment and protein interaction analyses, and examination of transcription factor-binding patterns. Raw signal intensity data were used for identification of recurrent copy number variations (CNVs). Non-redundant fully differentiating cytosine-phosphate-guanine sites (CpGs), which did not overlap CNV segments, were used in an L1 regularized logistic regression model (LASSO) to train a classification algorithm. Validation of this algorithm was performed using a large external cohort of benign and tumor prostate arrays. RESULTS: Approximately 6,000 probes and 600 genomic regions showed significant DNA methylation changes, primarily involving hypermethylation. Gene-set enrichment and protein interaction analyses found an overrepresentation of genes related to cell communications, neurogenesis, and proliferation. Motif enrichment analysis demonstrated enrichment of tumor suppressor-binding sites nearby DMRs. Several of these regions were also found to contain copy number amplifications. Using four non-redundant fully differentiating CpGs, we trained a classification model with 100% accuracy in discriminating tumors from benign samples. Validation of this algorithm using an external cohort of 234 tumors and 92 benign samples yielded 96% sensitivity and 98% specificity. The model was found to be highly sensitive to detect metastatic lesions in bone, lymph node, and soft tissue, while being specific enough to differentiate the benign hyperplasia of prostate from tumor. CONCLUSION: A considerable component of PCa DNA methylation profile represent driver events potentially established/maintained by disruption of tumor suppressor activity. As few as four CpGs from this profile can be used for screening of PCa.

15.
Clin Epigenetics ; 10: 21, 2018.
Article En | MEDLINE | ID: mdl-29456765

Background: Claes-Jensen syndrome is an X-linked inherited intellectual disability caused by mutations in the KDM5C gene. Kdm5c is a histone lysine demethylase involved in histone modifications and chromatin remodeling. Males with hemizygous mutations in KDM5C present with intellectual disability and facial dysmorphism, while most heterozygous female carriers are asymptomatic. We hypothesized that loss of Kdm5c function may influence other components of the epigenomic machinery including DNA methylation in affected patients. Results: Genome-wide DNA methylation analysis of 7 male patients affected with Claes-Jensen syndrome and 56 age- and sex-matched controls identified a specific DNA methylation defect (epi-signature) in the peripheral blood of these patients, including 1769 individual CpGs and 9 genomic regions. Six healthy female carriers showed less pronounced but distinctive changes in the same regions enabling their differentiation from both patients and controls. Highly specific computational model using the most significant methylation changes demonstrated 100% accuracy in differentiating patients, carriers, and controls in the training cohort, which was confirmed on a separate cohort of patients and carriers. The 100% specificity of this unique epi-signature was further confirmed on additional 500 unaffected controls and 600 patients with intellectual disability and developmental delay, including other patient cohorts with previously described epi-signatures. Conclusion: Peripheral blood epi-signature in Claes-Jensen syndrome can be used for molecular diagnosis and carrier identification and assist with interpretation of genetic variants of unknown clinical significance in the KDM5C gene.


DNA Methylation , DNA/blood , Dementia/diagnosis , Epigenomics/methods , Hearing Loss, Central/diagnosis , Histone Demethylases/genetics , Optic Atrophy/diagnosis , Adolescent , Adult , Aged , Case-Control Studies , Child , Child, Preschool , Computational Biology , Dementia/blood , Dementia/genetics , Female , Genetic Testing/methods , Hearing Loss, Central/blood , Hearing Loss, Central/genetics , Heterozygote , Humans , Male , Middle Aged , Mutation , Optic Atrophy/blood , Optic Atrophy/genetics , Sensitivity and Specificity , Young Adult
16.
Am J Hum Genet ; 102(1): 156-174, 2018 01 04.
Article En | MEDLINE | ID: mdl-29304373

Pediatric developmental syndromes present with systemic, complex, and often overlapping clinical features that are not infrequently a consequence of Mendelian inheritance of mutations in genes involved in DNA methylation, establishment of histone modifications, and chromatin remodeling (the "epigenetic machinery"). The mechanistic cross-talk between histone modification and DNA methylation suggests that these syndromes might be expected to display specific DNA methylation signatures that are a reflection of those primary errors associated with chromatin dysregulation. Given the interrelated functions of these chromatin regulatory proteins, we sought to identify DNA methylation epi-signatures that could provide syndrome-specific biomarkers to complement standard clinical diagnostics. In the present study, we examined peripheral blood samples from a large cohort of individuals encompassing 14 Mendelian disorders displaying mutations in the genes encoding proteins of the epigenetic machinery. We demonstrated that specific but partially overlapping DNA methylation signatures are associated with many of these conditions. The degree of overlap among these epi-signatures is minimal, further suggesting that, consistent with the initial event, the downstream changes are unique to every syndrome. In addition, by combining these epi-signatures, we have demonstrated that a machine learning tool can be built to concurrently screen for multiple syndromes with high sensitivity and specificity, and we highlight the utility of this tool in solving ambiguous case subjects presenting with variants of unknown significance, along with its ability to generate accurate predictions for subjects presenting with the overlapping clinical and molecular features associated with the disruption of the epigenetic machinery.


DNA Methylation/genetics , Genome, Human , Mutation/genetics , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , 5' Untranslated Regions/genetics , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Demography , Epigenesis, Genetic , Humans , Models, Genetic , Neurodevelopmental Disorders/blood , Probability , Reproducibility of Results , Young Adult
17.
Epigenetics ; 12(11): 923-933, 2017.
Article En | MEDLINE | ID: mdl-28933623

Kabuki syndrome (KS) is caused by mutations in KMT2D, which is a histone methyltransferase involved in methylation of H3K4, a histone marker associated with DNA methylation. Analysis of >450,000 CpGs in 24 KS patients with pathogenic mutations in KMT2D and 216 controls, identified 24 genomic regions, along with 1,504 CpG sites with significant DNA methylation changes including a number of Hox genes and the MYO1F gene. Using the most differentiating and significant probes and regions we developed a "methylation variant pathogenicity (MVP) score," which enables 100% sensitive and specific identification of individuals with KS, which was confirmed using multiple public and internal patient DNA methylation databases. We also demonstrated the ability of the MVP score to accurately reclassify variants of unknown significance in subjects with apparent clinical features of KS, enabling its potential use in molecular diagnostics. These findings provide novel insights into the molecular etiology of KS and illustrate that DNA methylation patterns can be interpreted as 'epigenetic echoes' in certain clinical disorders.


Abnormalities, Multiple/genetics , DNA Methylation , Face/abnormalities , Hematologic Diseases/genetics , Vestibular Diseases/genetics , Abnormalities, Multiple/pathology , Adolescent , Child , Child, Preschool , CpG Islands , DNA-Binding Proteins/genetics , Face/pathology , Female , Genes, Homeobox , Hematologic Diseases/pathology , Histone Demethylases/genetics , Humans , Infant , Male , Myosin Type I/genetics , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Vestibular Diseases/pathology , Young Adult
18.
J Mol Diagn ; 19(6): 905-920, 2017 11.
Article En | MEDLINE | ID: mdl-28818680

Next-generation sequencing (NGS) technology has rapidly replaced Sanger sequencing in the assessment of sequence variations in clinical genetics laboratories. One major limitation of current NGS approaches is the ability to detect copy number variations (CNVs) approximately >50 bp. Because these represent a major mutational burden in many genetic disorders, parallel CNV assessment using alternate supplemental methods, along with the NGS analysis, is normally required, resulting in increased labor, costs, and turnaround times. The objective of this study was to clinically validate a novel CNV detection algorithm using targeted clinical NGS gene panel data. We have applied this approach in a retrospective cohort of 391 samples and a prospective cohort of 2375 samples and found a 100% sensitivity (95% CI, 89%-100%) for 37 unique events and a high degree of specificity to detect CNVs across nine distinct targeted NGS gene panels. This NGS CNV pipeline enables stand-alone first-tier assessment for CNV and sequence variants in a clinical laboratory setting, dispensing with the need for parallel CNV analysis using classic techniques, such as microarray, long-range PCR, or multiplex ligation-dependent probe amplification. This NGS CNV pipeline can also be applied to the assessment of complex genomic regions, including pseudogenic DNA sequences, such as the PMS2CL gene, and to mitochondrial genome heteroplasmy detection.


DNA Copy Number Variations/genetics , Genetic Diseases, Inborn/diagnosis , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Algorithms , Female , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , Genomics , Humans , Male , Multiplex Polymerase Chain Reaction/methods , Sequence Analysis, DNA
19.
J Mol Diagn ; 19(6): 848-856, 2017 11.
Article En | MEDLINE | ID: mdl-28807811

Genomic imprinting involves a DNA methylation-dependent and parent-of-origin-specific regulation of gene expression. Clinical assays for imprinting disorders are genomic locus, disorder, and molecular defect specific. We aimed to clinically validate a genome-wide approach for simultaneous testing of common imprinting disorders in a single assay. Using genome-wide DNA methylation arrays, epigenetic profiles from peripheral blood of patients with Angelman, Prader-Willi, Beckwith-Wiedemann, or Silver-Russell syndromes were compared to a reference cohort of 361 unaffected individuals. The analysis was of developmental delay and intellectual disabilities. This approach has allowed 100% sensitivity and specificity in detecting imprinting defects in all 28 patients and enabled identification of defects beyond the classically tested imprinted loci. Analysis of the cohort of patients with developmental delay and intellectual disabilities identified two patients with Prader-Willi syndrome, one with Beckwith-Wiedemann syndrome, and several other patients with DNA methylation defects in novel putative imprinting loci. These findings demonstrate clinical validation of a sensitive and specific genome-wide DNA methylation array-based approach for molecular testing of imprinting disorders to allow simultaneous assessment of genome-wide epigenetic defects in a single analytical procedure, enabling replacement of multiple locus-specific molecular tests while allowing discovery of novel clinical epigenomic associations and differential diagnosis of other epigenomic disorders.


DNA Methylation/genetics , Epigenomics , Genomic Imprinting/genetics , Angelman Syndrome/genetics , Angelman Syndrome/pathology , Beckwith-Wiedemann Syndrome/genetics , Beckwith-Wiedemann Syndrome/pathology , Female , Gene Expression Regulation , Genome, Human , Humans , Male , Oligonucleotide Array Sequence Analysis/methods , Prader-Willi Syndrome/genetics , Prader-Willi Syndrome/pathology , Silver-Russell Syndrome/genetics , Silver-Russell Syndrome/pathology
20.
Epigenetics Chromatin ; 10: 10, 2017.
Article En | MEDLINE | ID: mdl-28293299

BACKGROUND: Alpha thalassemia/mental retardation X-linked syndrome (ATR-X) is caused by a mutation at the chromatin regulator gene ATRX. The mechanisms involved in the ATR-X pathology are not completely understood, but may involve epigenetic modifications. ATRX has been linked to the regulation of histone H3 and DNA methylation, while mutations in the ATRX gene may lead to the downstream epigenetic and transcriptional effects. Elucidating the underlying epigenetic mechanisms altered in ATR-X will provide a better understanding about the pathobiology of this disease, as well as provide novel diagnostic biomarkers. RESULTS: We performed genome-wide DNA methylation assessment of the peripheral blood samples from 18 patients with ATR-X and compared it to 210 controls. We demonstrated the evidence of a unique and highly specific DNA methylation "epi-signature" in the peripheral blood of ATRX patients, which was corroborated by targeted bisulfite sequencing experiments. Although genomically represented, differentially methylated regions showed evidence of preferential clustering in pericentromeric and telometric chromosomal regions, areas where ATRX has multiple functions related to maintenance of heterochromatin and genomic integrity. CONCLUSION: Most significant methylation changes in the 14 genomic loci provide a unique epigenetic signature for this syndrome that may be used as a highly sensitive and specific diagnostic biomarker to support the diagnosis of ATR-X, particularly in patients with phenotypic complexity and in patients with ATRX gene sequence variants of unknown significance.


Epigenesis, Genetic , Mental Retardation, X-Linked/genetics , alpha-Thalassemia/genetics , Adolescent , Adult , Child , Child, Preschool , CpG Islands , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , DNA Methylation , Genotype , Humans , Infant , Male , Mental Retardation, X-Linked/pathology , Middle Aged , Promoter Regions, Genetic , Sequence Analysis, DNA , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism , Young Adult , alpha-Thalassemia/pathology
...