Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Int ; 190: 108820, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38906088

RESUMEN

PFAS are ubiquitous industrial chemicals with known adverse health effects, particularly on the liver. The liver, being a vital metabolic organ, is susceptible to PFAS-induced metabolic dysregulation, leading to conditions such as hepatotoxicity and metabolic disturbances. In this study, we investigated the phenotypic and metabolic responses of PFAS exposure using two hepatocyte models, HepG2 (male cell line) and HepaRG (female cell line), aiming to define phenotypic alterations, and metabolic disturbances at the metabolite and pathway levels. The PFAS mixture composition was selected based on epidemiological data, covering a broad concentration spectrum observed in diverse human populations. Phenotypic profiling by Cell Painting assay disclosed predominant effects of PFAS exposure on mitochondrial structure and function in both cell models as well as effects on F-actin, Golgi apparatus, and plasma membrane-associated measures. We employed comprehensive metabolic characterization using liquid chromatography combined with high-resolution mass spectrometry (LC-HRMS). We observed dose-dependent changes in the metabolic profiles, particularly in lipid, steroid, amino acid and sugar and carbohydrate metabolism in both cells as well as in cell media, with HepaRG cell line showing a stronger metabolic response. In cells, most of the bile acids, acylcarnitines and free fatty acids showed downregulation, while medium-chain fatty acids and carnosine were upregulated, while the cell media showed different response especially in relation to the bile acids in HepaRG cell media. Importantly, we observed also nonmonotonic response for several phenotypic features and metabolites. On the pathway level, PFAS exposure was also associated with pathways indicating oxidative stress and inflammatory responses. Taken together, our findings on PFAS-induced phenotypic and metabolic disruptions in hepatocytes shed light on potential mechanisms contributing to the broader comprehension of PFAS-related health risks.

3.
Microb Cell Fact ; 23(1): 39, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311724

RESUMEN

BACKGROUND: Mucosal vaccines have the potential to induce protective immune responses at the sites of infection. Applying CRISPR/Cas9 editing, we aimed to develop a probiotic-based vaccine candidate expressing the HIV-1 envelope membrane-proximal external region (MPER) on the surface of E. coli Nissle 1917. RESULTS: The HIV-1 MPER epitope was successfully introduced in the porin OmpF of the E. coli Nissle 1917 (EcN-MPER) and the modification was stable over 30 passages of the recombinant bacteria on the DNA and protein level. Furthermore, the introduced epitope was recognized by a human anti-HIV-1 gp41 (2F5) antibody using both live and heat-killed EcN-MPER, and this antigenicity was also retained over 30 passages. Whole-cell dot blot suggested a stronger binding of anti-HIV-1 gp41 (2F5) to heat-killed EcN-MPER than their live counterpart. An outer membrane vesicle (OMV) - rich extract from EcN-MPER culture supernatant was equally antigenic to anti-HIV-1 gp41 antibody which suggests that the MPER antigen could be harboured in EcN-MPER OMVs. Using quantitative ELISA, we determined the amount of MPER produced by the modified EcN to be 14.3 µg/108 cfu. CONCLUSIONS: The CRISPR/Cas9 technology was an effective method for establishment of recombinant EcN-MPER bacteria that was stable over many passages. The developed EcN-MPER clone was devoid of extraneous plasmids and antibiotic resistance genes which eliminates the risk of plasmid transfer to animal hosts, should this clone be used as a vaccine. Also, the EcN-MPER clone was recognised by anti-HIV-1 gp41 (2F5) both as live and heat-killed bacteria making it suitable for pre-clinical evaluation. Expression of OmpF on bacterial surfaces and released OMVs identifies it as a compelling candidate for recombinant epitope modification, enabling surface epitope presentation on both bacteria and OMVs. By applying the methods described in this study, we present a potential platform for cost-effective and rational vaccine antigen expression and administration, offering promising prospects for further research in the field of vaccine development.


Asunto(s)
VIH-1 , Vacunas , Animales , Humanos , Epítopos , Escherichia coli/genética , VIH-1/genética , Sistemas CRISPR-Cas , Anticuerpos Anti-VIH
4.
Environ Int ; 183: 108412, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38183898

RESUMEN

Due to their exceptional properties and cost effectiveness, polyamides or nylons have emerged as widely used materials, revolutionizing diverse industries, including industrial 3D printing or additive manufacturing (AM). Powder-based AM technologies employ tonnes of polyamide microplastics to produce complex components every year. However, the lack of comprehensive toxicity assessment of particulate polyamides and polyamide-associated chemicals, especially in the light of the global microplastics crisis, calls for urgent action. This study investigated the physicochemical properties of polyamide-12 microplastics used in AM, and assessed a number of toxicity endpoints focusing on inflammation, immunometabolism, genotoxicity, aryl hydrocarbon receptor (AhR) activation, endocrine disruption, and cell morphology. Specifically, microplastics examination by means of field emission scanning electron microscopy revealed that work flow reuse of material created a fraction of smaller particles with an average size of 1-5 µm, a size range readily available for uptake by human cells. Moreover, chemical analysis by means of gas chromatography high-resolution mass spectrometry detected several polyamide-associated chemicals including starting material, plasticizer, thermal stabilizer/antioxidant, and migrating slip additive. Even if polyamide particles and chemicals did not induce an acute inflammatory response, repeated and prolonged exposure of human primary macrophages disclosed a steady increase in the levels of proinflammatory chemokine Interleukin-8 (IL-8/CXCL-8). Moreover, targeted metabolomics disclosed that polyamide particles modulated the kynurenine pathway and some of its key metabolites. The p53-responsive luciferase reporter gene assay showed that particles per se were able to activate p53, being indicative of a genotoxic stress. Polyamide-associated chemicals triggered moderate activation of AhR and elicited anti-androgenic activity. Finally, a high-throughput and non-targeted morphological profiling by Cell Painting assay outlined major sites of bioactivity of polyamide-associated chemicals and indicated putative mechanisms of toxicity in the cells. These findings reveal that the increasing use of polyamide microplastics may pose a potential health risk for the exposed individuals, and it merits more attention.


Asunto(s)
Nylons , Contaminantes Químicos del Agua , Humanos , Microplásticos/toxicidad , Plásticos/toxicidad , Proteína p53 Supresora de Tumor , Plastificantes , Contaminantes Químicos del Agua/análisis
6.
Diabetes Metab J ; 47(5): 668-681, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37349083

RESUMEN

BACKGRUOUND: Diabetes is a chronic disease with several long-term complications. Several glucose-lowering drugs are used to treat type 2 diabetes mellitus (T2DM), e.g., glimepiride and liraglutide, in which both having different modes of action. Circulating microRNAs (miRNAs) are suggested as potential biomarkers that are associated with the disease development and the effects of the treatment. In the current study we evaluated the effect of glimepiride, liraglutide on the expression of the circulating miRNAs. METHODS: The present study is a post hoc trial from a previously randomized control trial comparing liraglutide versus glimepiride both in combination with metformin in subjects with T2DM, and subclinical heart failure. miRNAs were determined in the subjects' serum samples with next generation sequencing. Expression patterns of the circulating miRNAs were analyzed using bioinformatic univariate and multivariate analyses (clinical trial registration: NCT01425580). RESULTS: Univariate analyses show that treatment with glimepiride altered expression of three miRNAs in patient serum, miR-206, miR-182-5p, and miR-766-3p. Both miR-182-5p and miR-766-3p were also picked up among the top contributing miRNAs with penalized regularised logistic regressions (Lasso). The highest-ranked miRNAs with respect to Lasso coefficients were miR-3960, miR-31-5p, miR-3613-3p, and miR-378a-3p. Liraglutide treatment did not significantly influence levels of circulating miRNAs. CONCLUSION: Present study indicates that glucose-lowering drugs differently affect the expression of circulating miRNAs in serum in individuals with T2DM. More studies are required to investigate possible mechanisms by which glimepiride is affecting the expression of circulating miRNAs.


Asunto(s)
Diabetes Mellitus Tipo 2 , MicroARNs , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Liraglutida/farmacología , Liraglutida/uso terapéutico , Glucosa
7.
Cells ; 12(2)2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36672217

RESUMEN

Additive manufacturing (AM) or industrial 3D printing uses cutting-edge technologies and materials to produce a variety of complex products. However, the effects of the unintentionally emitted AM (nano)particles (AMPs) on human cells following inhalation, require further investigations. The physicochemical characterization of the AMPs, extracted from the filter of a Laser Powder Bed Fusion (L-PBF) 3D printer of iron-based materials, disclosed their complexity, in terms of size, shape, and chemistry. Cell Painting, a high-content screening (HCS) assay, was used to detect the subtle morphological changes elicited by the AMPs at the single cell resolution. The profiling of the cell morphological phenotypes, disclosed prominent concentration-dependent effects on the cytoskeleton, mitochondria, and the membranous structures of the cell. Furthermore, lipidomics confirmed that the AMPs induced the extensive membrane remodeling in the lung epithelial and macrophage co-culture cell model. To further elucidate the biological mechanisms of action, the targeted metabolomics unveiled several inflammation-related metabolites regulating the cell response to the AMP exposure. Overall, the AMP exposure led to the internalization, oxidative stress, cytoskeleton disruption, mitochondrial activation, membrane remodeling, and metabolic reprogramming of the lung epithelial cells and macrophages. We propose the approach of integrating Cell Painting with metabolomics and lipidomics, as an advanced nanosafety methodology, increasing the ability to capture the cellular and molecular phenotypes and the relevant biological mechanisms to the (nano)particle exposure.


Asunto(s)
Lipidómica , Metabolómica , Humanos , Pulmón/metabolismo , Células Epiteliales , Fenotipo
8.
Front Toxicol ; 4: 836447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35548681

RESUMEN

Additive manufacturing (AM) or industrial three-dimensional (3D) printing drives a new spectrum of design and production possibilities; pushing the boundaries both in the application by production of sophisticated products as well as the development of next-generation materials. AM technologies apply a diversity of feedstocks, including plastic, metallic, and ceramic particle powders with distinct size, shape, and surface chemistry. In addition, powders are often reused, which may change the particles' physicochemical properties and by that alter their toxic potential. The AM production technology commonly relies on a laser or electron beam to selectively melt or sinter particle powders. Large energy input on feedstock powders generates several byproducts, including varying amounts of virgin microparticles, nanoparticles, spatter, and volatile chemicals that are emitted in the working environment; throughout the production and processing phases. The micro and nanoscale size may enable particles to interact with and to cross biological barriers, which could, in turn, give rise to unexpected adverse outcomes, including inflammation, oxidative stress, activation of signaling pathways, genotoxicity, and carcinogenicity. Another important aspect of AM-associated risks is emission/leakage of mono- and oligomers due to polymer breakdown and high temperature transformation of chemicals from polymeric particles, both during production, use, and in vivo, including in target cells. These chemicals are potential inducers of direct toxicity, genotoxicity, and endocrine disruption. Nevertheless, understanding whether AM particle powders and their byproducts may exert adverse effects in humans is largely lacking and urges comprehensive safety assessment across the entire AM lifecycle-spanning from virgin and reused to airborne particles. Therefore, this review will detail: 1) brief overview of the AM feedstock powders, impact of reuse on particle physicochemical properties, main exposure pathways and protective measures in AM industry, 2) role of particle biological identity and key toxicological endpoints in the particle safety assessment, and 3) next-generation toxicology approaches in nanosafety for safety assessment in AM. Altogether, the proposed testing approach will enable a deeper understanding of existing and emerging particle and chemical safety challenges and provide a strategy for the development of cutting-edge methodologies for hazard identification and risk assessment in the AM industry.

9.
Sci Total Environ ; 779: 146404, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-33752003

RESUMEN

The pyrethroid insecticide permethrin is widely used for agricultural and domestic purposes. Previous data indicated that it acts as a developmental neurotoxicant and can induce transgenerational effects in non-target organisms. However, associated underlying mechanisms remain unclear. The aim of this study was to investigate permethrin-related transgenerational effects in the zebrafish model, and to identify possible molecular mechanisms underlying inheritance. Zebrafish (F0) were exposed to permethrin during early-life (2 h post-fertilization up to 28 days). The F1 and F2 offspring generations were obtained by pairing exposed F0 males and females, and were bred unexposed. Locomotor and anxiety behavior were investigated, together with transcriptomic and epigenomic (DNA methylation) changes in brains. Permethrin exposed F0 fish were hypoactive at adulthood, while males from the F1 and F2 generations showed a specific decrease in anxiety-like behavior. In F0, transcriptomic data showed enrichment in pathways related to glutamatergic synapse activity, which may partly underlie the behavioral effects. In F1 and F2 males, dysregulation of similar pathways was observed, including a subset of differentially methylated regions that were inherited from the F0 to the F2 generation and indicated stable dysregulation of glutamatergic signaling. Altogether, the present results provide novel evidence on the transgenerational neurotoxic effects of permethrin, as well as mechanistic insight: a transient exposure induces persistent transcriptional and DNA methylation changes that may translate into transgenerational alteration of glutamatergic signaling and, thus, into behavioral alterations.


Asunto(s)
Insecticidas , Pez Cebra , Animales , Conducta Animal , Metilación de ADN , Epigénesis Genética , Epigenómica , Femenino , Insecticidas/toxicidad , Masculino , Permetrina/toxicidad , Transcriptoma , Pez Cebra/genética
10.
Ecotoxicol Environ Saf ; 205: 111348, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979803

RESUMEN

Transgenerational effects induced by environmental stressors are a threat to ecosystems and human health. However, there is still limited observation and understanding of the potential of chemicals to influence life outcomes over several generations. In the present study, we investigated the effects of two environmental contaminants, coumarin 47 and permethrin, on exposed zebrafish (F0) and their progeny (F1-F3). Coumarin 47 is commonly found in personal care products and dyes, whereas permethrin is used as a domestic and agricultural pyrethroid insecticide/insect repellent. Zebrafish (F0) were exposed during early development until 28 days post-fertilization and their progeny (F1-F3) were bred unexposed. On one hand, the effects induced by coumarin 47 suggest no multigenerational toxicity. On the other hand, we found that behavior of zebrafish larvae was significantly affected by exposure to permethrin in F1 to F3 generations with some differences depending on the concentration. This suggests persistent alteration of the neural or neuromuscular function. In addition, lipidomic analyses showed that permethrin treatment was partially correlated with lysophosphatidylcholine levels in zebrafish, an important lipid for neurodevelopment. Overall, these results stress out one of the most widely used pyrethroids can trigger long-term, multi- and possibly transgenerational changes in the nervous system of zebrafish. These neurobehavioral changes echo the effects observed under direct exposure to high concentrations of permethrin and therefore call for more research on mechanisms underlying effect inheritance.


Asunto(s)
Cumarinas/toxicidad , Repelentes de Insectos/toxicidad , Permetrina/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Cumarinas/metabolismo , Ecosistema , Fertilidad/efectos de los fármacos , Larva/efectos de los fármacos , Metabolismo de los Lípidos , Pez Cebra/metabolismo , Pez Cebra/fisiología
11.
Chem Res Toxicol ; 33(9): 2261-2275, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32830476

RESUMEN

Hepatotoxicity is a major reason for the withdrawal or discontinuation of drugs from clinical trials. Thus, better tools are needed to filter potential hepatotoxic drugs early in drug discovery. Our study demonstrates utilization of HCI phenotypes, chemical descriptors, and both combined (hybrid) descriptors to construct random forest classifiers (RFCs) for the prediction of hepatotoxicity. HCI data published by Broad Institute provided HCI phenotypes for about 30 000 samples in multiple replicates. Phenotypes belonging to 346 chemicals, which were tested in up to eight replicates, were chosen as a basis for our analysis. We then constructed individual RFC models for HCI phenotypes, chemical descriptors, and hybrid (chemical and HCI) descriptors. The model that was constructed using selective hybrid descriptors showed high predictive performance with 5-fold cross validation (CV) balanced accuracy (BA) at 0.71, whereas within the given applicability domain (AD), independent test set and external test set prediction BAs were equal to 0.61 and 0.60, respectively. The model constructed using chemical descriptors showed a similar predictive performance with a 5-fold CV BA equal to 0.66, a test set prediction BA within the AD equal to 0.56, and an external test set prediction BA within the AD equal to 0.50. In conclusion, the hybrid and chemical descriptor-based models presented here should be considered as a new tool for filtering hepatotoxic molecules during compound prioritization in drug discovery.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hígado/efectos de los fármacos , Animales , Humanos , Fenotipo
12.
Aquat Toxicol ; 215: 105272, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31442592

RESUMEN

A number of chemicals have been shown to affect epigenetic patterning and functions. Since epigenetic mechanisms regulate transcriptional networks, epigenetic changes induced by chemical exposure can represent early molecular events for long-term adverse physiological effects. Epigenetics has thus appeared as a research field of major interest within (eco)toxicological sciences. The present study aimed at measuring effects on epigenetic-related mechanisms of selected environmental chemicals (bisphenols, perfluorinated chemicals, methoxychlor, permethrin, vinclozolin and coumarin 47) in zebrafish embryos and liver cells (ZFL). Transcription of genes related to DNA methylation and histone modifications was measured and global DNA methylation was assessed in ZFL cells using the LUMA assay. The differences in results gathered from both models suggest that chemicals affect different mechanisms related to epigenetics in embryos and cells. In zebrafish embryos, exposure to bisphenol A, coumarin 47, methoxychlor and permethrin lead to significant transcriptional changes in epigenetic factors suggesting that they can impact early epigenome reprogramming related to embryonic development. In ZFL cells, significant transcriptional changes were observed upon exposure to all chemicals but coumarin 47; however, only perfluorooctane sulfonate induced significant effects on global DNA methylation. Notably, in contrast to the other tested chemicals, perfluorooctane sulfonate affected only the expression of the histone demethylase kdm5ba. In addition, kdm5ba appeared as a sensitive gene in zebrafish embryos as well. Taken together, the present results suggest a role for kdm5ba in regulating epigenetic patterns in response to chemical exposure, even though mechanisms remain unclear. To confirm these findings, further evidence is required regarding changes in site-specific histone marks and DNA methylation together with their long-term effects on physiological outcomes.


Asunto(s)
Embrión no Mamífero/metabolismo , Epigénesis Genética , Hígado/metabolismo , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/embriología , Pez Cebra/genética , Animales , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Embrión no Mamífero/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/efectos de los fármacos , Pruebas de Toxicidad Aguda , Transcripción Genética/efectos de los fármacos
13.
Ecotoxicol Environ Saf ; 170: 691-698, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30580163

RESUMEN

Perfluorooctanesulfonate (PFOS) is a well-known contaminant in the environment and it has shown to disrupt multiple biological pathways, particularly those related with lipid metabolism. In this study, we have studied the impact of in ovo exposure to PFOS on lipid metabolism in livers in developing chicken embryos using lipidomics for detailed characterization of the liver lipidome. We used an avian model (Gallus gallus domesticus) for in ovo treatment at two levels of PFOS. The lipid profile of the liver of the embryo was investigated by ultra-high performance liquid chromatography combined with quadrupole-time-of-flight mass spectrometry and by gas chromatography mass spectrometry. Over 170 lipids were identified, covering phospholipids, ceramides, di- and triacylglycerols, cholesterol esters and fatty acid composition of the lipids. The PFOS exposure caused dose dependent changes in the lipid levels, which included upregulation of specific phospholipids associated with the phosphatidylethanolamine N-methyltransferase (PEMT) pathway, triacylglycerols with low carbon number and double bond count as well as of lipotoxic ceramides and diacylglycerols. Our data suggest that at lower levels of exposure, mitochondrial fatty acid ß-oxidation is suppressed while the peroxisomal fatty acid ß -oxidation is increased. At higher doses, however, both ß -oxidation pathways are upregulated.


Asunto(s)
Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/toxicidad , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Animales , Ceramidas/metabolismo , Embrión de Pollo , Pollos , Diglicéridos/metabolismo , Ácidos Grasos/metabolismo , Femenino , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Mitocondrias/metabolismo , Fosfatidiletanolamina N-Metiltransferasa/metabolismo , Fosfolípidos/metabolismo , Triglicéridos/metabolismo
14.
Environ Sci Pollut Res Int ; 25(23): 23074-23081, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29860686

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are synthetic surfactants with a wide variety of applications; however, due to their stability, they are particularly resistant to degradation and, as such, are classed as persistent organic pollutants. Perfluorooctane sulfonate (PFOS) is one such PFAS that is still detectable in a range of different environmental settings, despite its use now being regulated in numerous countries. Elevated levels of PFOS have been detected in various avian species, and the impact of this on avian health is of interest when determining acceptable levels of PFOS in the environment. Due to its similarities to naturally occurring fatty acids, PFOS has potential to disrupt a range of biological pathways, particularly those associated with lipid metabolism, and this has been shown in various species. In this study, we have investigated how in ovo exposure to environmentally relevant levels of PFOS affects expression of genes involved in lipid metabolism of developing chicken embryos. We have found a broad suppression of transcription of genes involved in fatty acid oxidation and PPAR-mediated transcription with more significant effects apparent at lower doses of PFOS. These results highlight the need for more research investigating the biological impacts of low levels of PFAS to properly inform environmental policy governing their regulation.


Asunto(s)
Ácidos Alcanesulfónicos/efectos adversos , Contaminantes Ambientales/efectos adversos , Ácidos Grasos/metabolismo , Fluorocarburos/efectos adversos , Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Animales , Embrión de Pollo , Relación Dosis-Respuesta a Droga , Reacción en Cadena de la Polimerasa
15.
Scand J Urol ; 52(2): 139-142, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29334289

RESUMEN

OBJECTIVE: The aim of this study was to investigate whether protein expression of the extracellular matrix-degrading protease ADAMTS5 can be demonstrated in the urinary bladder of healthy rats, and, if so, to determine the localization of this enzyme. MATERIALS AND METHODS: The experiments were conducted with eight inbred male Sprague-Dawley rats. Immunohistochemistry was used to investigate the expression of ADAMTS5 in the urinary bladder. Negative controls were established by either excluding the primary antibody or applying the antibody after it had been preabsorbed with its immunogenic peptide. Confocal microscopy was used to visualize the distribution of ADAMTS5 in the urinary bladder tissue. RESULTS: Immunoreactivity for ADAMTS5 was demonstrated in the urothelium and in the detrusor. This expression was localized not only in the cytoplasm, but also in the nuclei. Confocal microscopy corroborated these findings. CONCLUSION: Expression of ADAMTS5 was demonstrated in the cytoplasm as well as in the nuclei of the urothelium and detrusor cells, suggesting that it may play a role at the transcriptional level.


Asunto(s)
Proteína ADAMTS5/metabolismo , Vejiga Urinaria/enzimología , Urotelio/enzimología , Animales , Núcleo Celular/enzimología , Citoplasma/enzimología , Inmunohistoquímica , Masculino , Microscopía Confocal , Ratas , Ratas Sprague-Dawley , Vejiga Urinaria/citología , Vejiga Urinaria/diagnóstico por imagen , Urotelio/citología , Urotelio/diagnóstico por imagen
16.
Sci Total Environ ; 590-591: 249-257, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28283292

RESUMEN

Perfluorooctane sulfonic acid (PFOS) and 3,3',4,4',5-pentachlorobiphenyl (PCB126) are persistent organic pollutants of high concern because of their environmental persistence, bioaccumulation and toxic properties. Besides, the amphiphilic properties of fluorinated compounds such as PFOS and perfluorohexanoic acid (PFHxA) suggest a role in increasing cell membrane permeability and solubilizing chemicals. The present study aimed at investigating whether PFOS and PFHxA are capable of modifying the activation of PCB126 toxicity-related pathways. For this purpose, zebrafish embryos were exposed in semi-static conditions to 7.5µg/L of PCB126 alone, in the presence of 25mg/L of PFOS, 15.7mg/L of PFHxA or in the presence of both PFOS and PFHxA. Quantitative PCR was performed on embryos aged from 24h post fertilization (hpf) to 96 hpf to investigate expression changes of genes involved in metabolism of xenobiotics (ahr2, cyp1a), oxidative stress (gpx1a, tp53), lipids metabolism (acaa2, osbpl1a), and epigenetic mechanisms (dnmt1, dnmt3ba). Cyp1a and ahr2 expression were significantly induced by the presence of PCB126. However, after 72 and 78h of exposure, induction of cyp1a expression was significantly lower when embryos were co-exposed to PCB126+PFOS+PFHxA when compared to PCB126-exposed embryos. Significant upregulation of gpx1a occurred after exposure to PCB126+PFHxA and to PCB126+PFOS+PFHxA at 30 and 48 hpf. Besides, embryos appeared more sensitive to PCB126+PFOS+PFHxA at 78 hpf: acaa2 and osbpl1a were significantly downregulated; dnmt1 was significantly upregulated. While presented as environmentally safe, PFHxA demonstrated that it could affect gene expression patterns in zebrafish embryos when combined to PFOS and PCB126, suggesting that such mixture may increase PCB126 toxicity. This is of particular relevance since PFHxA is persistent and still being ejected into the environment. Moreover, it provides additional information as to the importance to integrate mixture effects of chemicals in risk assessment and biomonitoring frameworks.


Asunto(s)
Ácidos Alcanesulfónicos/toxicidad , Caproatos/toxicidad , Embrión no Mamífero/efectos de los fármacos , Fluorocarburos/toxicidad , Bifenilos Policlorados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/genética , Animales , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos
17.
BMC Microbiol ; 16(1): 188, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27538539

RESUMEN

BACKGROUND: The complications in healthcare systems associated with antibiotic-resistant microorganisms have resulted in an intense search for new effective antimicrobials. Attractive substances from which novel antibiotics may be developed are the bacteriocins. These naturally occurring peptides are generally considered to be safe and efficient at eliminating pathogenic bacteria. Among specific keystone pathogens in periodontitis, Porphyromonas gingivalis is considered to be the most important pathogen in the development and progression of chronic inflammatory disease. The aim of the present study was to investigate the antimicrobial effects of different Lactobacillus species and the two-peptide bacteriocin PLNC8 αß on P. gingivalis. RESULTS: Growth inhibition of P. gingivalis was obtained by viable Lactobacillus and culture media from L. plantarum NC8 and 44048, but not L. brevis 30670. The two-peptide bacteriocin from L. plantarum NC8 (PLNC8 αß) was found to be efficient against P. gingivalis through binding followed by permeabilization of the membranes, using Surface plasmon resonance analysis and DNA staining with Sytox Green. Liposomal systems were acquired to verify membrane permeabilization by PLNC8 αß. The antimicrobial activity of PLNC8 αß was found to be rapid (1 min) and visualized by TEM to cause cellular distortion through detachment of the outer membrane and bacterial lysis. CONCLUSION: Soluble or immobilized PLNC8 αß bacteriocins may be used to prevent P. gingivalis colonization and subsequent pathogenicity, and thus supplement the host immune system against invading pathogens associated with periodontitis.


Asunto(s)
Antibacterianos/farmacología , Bacteriocinas/farmacología , Lactobacillus/fisiología , Periodontitis/prevención & control , Porphyromonas gingivalis/efectos de los fármacos , Porphyromonas gingivalis/fisiología , Bacteriocinas/química , Pared Celular/efectos de los fármacos , Dicroismo Circular/métodos , Técnicas de Cocultivo , Dispersión Dinámica de Luz/métodos , Concentración de Iones de Hidrógeno , Liposomas/farmacología , Pruebas de Sensibilidad Microbiana , Periodontitis/microbiología , Estructura Secundaria de Proteína
18.
PLoS One ; 9(12): e115592, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25526394

RESUMEN

The ability of commensal bacteria to influence gene expression in host cells under the influence of pathogenic bacteria has previously been demonstrated, however the extent of this interaction is important for understanding how bacteria can be used as probiotics. Real-time quantitative polymerase chain reaction is the most sensitive tool for evaluating relative changes to gene expression levels. However as a result of its sensitivity an appropriate method of normalisation should be used to account for any variation incurred in preparatory experimental procedures. These variations may result from differences in the amount of starting material, quality of extracted RNA, or in the efficiency of the reverse transcriptase or polymerase enzymes. Selection of an endogenous control gene is the preferred method of normalisation, and ideally a proper validation of the gene's appropriateness for the study in question should be performed. In this study we used quantitative polymerase chain reaction data and applied four different algorithms (geNorm, BestKeeper, NormFinder, and comparative ΔCq) to evaluate eleven different genes as to their suitability as endogenous controls for use in studies involving colonic (HT-29) and vaginal (VK2/E6E7) human mucosal epithelial cells treated with probiotic and pathogenic bacteria. We found phosphoglycerate kinase 1 to be most appropriate for HT-29 cells, and ribosomal protein large P0 to be the best choice for VK2/E6E7 cells. We also showed that use of less stable reference genes can lead to less accurate quantification of expression levels of gene of interest (GOI) and also can result in decreased statistical significance for GOI expression levels when compared to control. Additionally, we found the cell type being analysed had greater influence on reference gene selection than the treatment performed. This study provides recommendations for stable endogenous control genes for use in further studies involving colonic and vaginal cell lines after bacterial challenge.


Asunto(s)
Colon/citología , Células Epiteliales/microbiología , Reacción en Cadena de la Polimerasa/normas , Vagina/citología , Línea Celular , Células Epiteliales/citología , Femenino , Perfilación de la Expresión Génica/normas , Células HT29 , Humanos , Reacción en Cadena de la Polimerasa/métodos , Estándares de Referencia
19.
FEMS Immunol Med Microbiol ; 66(2): 147-56, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22620976

RESUMEN

Lactobacillus rhamnosus GR-1 is a probiotic bacterium used to maintain urogenital health. The putative mechanism for its probiotic effect is by modulating the host immunity. Urinary tract infections (UTI) are often caused by uropathogenic Escherichia coli that frequently evade or suppress immune responses in the bladder and can target pathways, including nuclear factor-kappaB (NF-κB). We evaluated the role of L. rhamnosus GR-1 on NF-κB activation in E. coli-stimulated bladder cells. Viable L. rhamnosus GR-1 was found to potentiate NF-κB activity in E. coli-stimulated T24 bladder cells, whereas heat-killed lactobacilli demonstrated a marginal increase in NF-κB activity. Surface components released by trypsin- or LiCl treatment, or the resultant heat-killed shaved lactobacilli, had no effect on NF-κB activity. Isolation of released products from L. rhamnosus GR-1 demonstrated that the induction of NF-κB activity was owing to released product(s) with a relatively large native size. Several putative immunomodulatory proteins were identified, namely GroEL, elongation factor Tu and NLP/P60. GroEL and elongation factor Tu have previously been shown to elicit immune responses from human cells. Isolating and using immune-augmenting substances produced by lactobacilli is a novel strategy for the prevention or treatment of UTI caused by immune-evading E. coli.


Asunto(s)
Productos Biológicos/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Factores Inmunológicos/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , FN-kappa B/metabolismo , Escherichia coli Uropatógena/inmunología , Línea Celular , Humanos , Probióticos/metabolismo
20.
Mol Med ; 18: 712-8, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22415012

RESUMEN

All-trans retinoic acid, controlled by cytochrome P450, family 26 (CYP26) enzymes, potentially has beneficial effects in atherosclerosis treatment. This study investigates CYP26 subfamily B, polypeptide 1 (CYP26B1) in atherosclerosis and the effects of a genetic polymorphism in CYP26B1 on retinoid catabolism. We found that CYP26B1 mRNA was induced by retinoic acid in human atherosclerotic arteries, and CYP26B1 and the macrophage marker CD68 were colocalized in human atherosclerotic lesions. In mice, Cyp26B1 mRNA was higher in atherosclerotic arteries than in normal arteries. Databases were queried for nonsynonymous CYP26B1 single nucleotide polymorphisms (SNPs) and rs2241057 selected for further studies. Constructs of the CYP26B1 variants were created and used for production of purified proteins and transfection of macrophagelike cells. The minor variant catabolized retinoic acid with significantly higher efficiency, indicating that rs2241057 is functional and suggesting reduced retinoid availability in tissues with the minor variant. rs2241057 was investigated in a Stockholm Coronary Atherosclerosis Risk Factor (SCARF) subgroup. The minor allele was associated with slightly larger lesions, as determined by angiography. In summary, this study identifies the first CYP26B1 polymorphism that alters CYP26B1 capacity to metabolize retinoic acid. CYP26B1 was expressed in macrophage-rich areas of human atherosclerotic lesions, induced by retinoic acid and increased in murine atherosclerosis. Taken together, the results indicate that CYP26B1 capacity is genetically regulated and suggest that local CYP26B1 activity may influence atherosclerosis.


Asunto(s)
Aterosclerosis/genética , Aterosclerosis/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Polimorfismo de Nucleótido Simple , Tretinoina/metabolismo , Alelos , Animales , Línea Celular , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Expresión Génica , Genotipo , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ácido Retinoico 4-Hidroxilasa , Transcripción Genética/efectos de los fármacos , Tretinoina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...