Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
Plant J ; 118(6): 2219-2232, 2024 Jun.
Article En | MEDLINE | ID: mdl-38602250

Sugar beet (Beta vulgaris) is the major sugar-producing crop in Europe and Northern America, as the taproot stores sucrose at a concentration of around 20%. Genome sequence analysis together with biochemical and electrophysiological approaches led to the identification and characterization of the TST sucrose transporter driving vacuolar sugar accumulation in the taproot. However, the sugar transporters mediating sucrose uptake across the plasma membrane of taproot parenchyma cells remained unknown. As with glucose, sucrose stimulation of taproot parenchyma cells caused inward proton fluxes and plasma membrane depolarization, indicating a sugar/proton symport mechanism. To decipher the nature of the corresponding proton-driven sugar transporters, we performed taproot transcriptomic profiling and identified the cold-induced PMT5a and STP13 transporters. When expressed in Xenopus laevis oocytes, BvPMT5a was characterized as a voltage- and H+-driven low-affinity glucose transporter, which does not transport sucrose. In contrast, BvSTP13 operated as a high-affinity H+/sugar symporter, transporting glucose better than sucrose, and being more cold-tolerant than BvPMT5a. Modeling of the BvSTP13 structure with bound mono- and disaccharides suggests plasticity of the binding cleft to accommodate the different saccharides. The identification of BvPMT5a and BvSTP13 as taproot sugar transporters could improve breeding of sugar beet to provide a sustainable energy crop.


Beta vulgaris , Cell Membrane , Glucose , Plant Proteins , Plant Roots , Protons , Sucrose , Beta vulgaris/genetics , Beta vulgaris/metabolism , Sucrose/metabolism , Glucose/metabolism , Plant Roots/metabolism , Plant Roots/genetics , Cell Membrane/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Biological Transport , Xenopus laevis , Animals , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Oocytes/metabolism
2.
Curr Biol ; 33(3): 589-596.e5, 2023 02 06.
Article En | MEDLINE | ID: mdl-36693369

The Venus flytrap Dionaea muscipula estimates prey nutrient content by counting trigger hair contacts initiating action potentials (APs) and calcium waves traveling all over the trap.1,2,3 A first AP is associated with a subcritical rise in cytosolic calcium concentration, but when the second AP arrives in time, calcium levels pass the threshold required for fast trap closure. Consequently, memory function and decision-making are timed via a calcium clock.3,4 For higher numbers of APs elicited by the struggling prey, the Ca2+ clock connects to the networks governed by the touch hormone jasmonic acid (JA), which initiates slow, hermetic trap sealing and mining of the animal food stock.5 Two distinct phases of trap closure can be distinguished within Dionaea's hunting cycle: (1) very fast trap snapping requiring two APs and crossing of a critical cytosolic Ca2+ level and (2) JA-dependent slow trap sealing and prey processing induced by more than five APs. The Dionaea mutant DYSC is still able to fire touch-induced APs but does not snap close its traps and fails to enter the hunting cycle after prolonged mechanostimulation. Transcriptomic analyses revealed that upon trigger hair touch/AP stimulation, activation of calcium signaling is largely suppressed in DYSC traps. The observation that external JA application restored hunting cycle progression together with the DYSC phenotype and its transcriptional landscape indicates that DYSC cannot properly read, count, and decode touch/AP-induced calcium signals that are key in prey capture and processing.


Droseraceae , Dyscalculia , Animals , Action Potentials , Calcium
3.
New Phytol ; 237(1): 217-231, 2023 01.
Article En | MEDLINE | ID: mdl-36128659

Salt stress is a major abiotic stress, responsible for declining agricultural productivity. Roots are regarded as hubs for salt detoxification, however, leaf salt concentrations may exceed those of roots. How mature leaves manage acute sodium chloride (NaCl) stress is mostly unknown. To analyze the mechanisms for NaCl redistribution in leaves, salt was infiltrated into intact tobacco leaves. It initiated pronounced osmotically-driven leaf movements. Leaf downward movement caused by hydro-passive turgor loss reached a maximum within 2 h. Salt-driven cellular water release was accompanied by a transient change in membrane depolarization but not an increase in cytosolic calcium ion (Ca2+ ) level. Nonetheless, only half an hour later, the leaves had completely regained turgor. This recovery phase was characterized by an increase in mesophyll cell plasma membrane hydrogen ion (H+ ) pumping, a salt uptake-dependent cytosolic alkalization, and a return of the apoplast osmolality to pre-stress levels. Although, transcript numbers of abscisic acid- and Salt Overly Sensitive pathway elements remained unchanged, salt adaptation depended on the vacuolar H+ /Na+ -exchanger NHX1. Altogether, tobacco leaves can detoxify sodium ions (Na+ ) rapidly even under massive salt loads, based on pre-established posttranslational settings and NHX1 cation/H+ antiport activity. Unlike roots, signaling and processing of salt stress in tobacco leaves does not depend on Ca2+ signaling.


Calcium , Nicotiana , Calcium/metabolism , Nicotiana/metabolism , Sodium Chloride/pharmacology , Plant Roots/metabolism , Plant Leaves/physiology , Sodium/metabolism , Ions/metabolism
4.
Curr Biol ; 32(19): 4255-4263.e5, 2022 10 10.
Article En | MEDLINE | ID: mdl-36087579

Since the 19th century, it has been known that the carnivorous Venus flytrap is electrically excitable. Nevertheless, the mechanism and the molecular entities of the flytrap action potential (AP) remain unknown. When entering the electrically excitable stage, the trap expressed a characteristic inventory of ion transporters, among which the increase in glutamate receptor GLR3.6 RNA was most pronounced. Trigger hair stimulation or glutamate application evoked an AP and a cytoplasmic Ca2+ transient that both propagated at the same speed from the site of induction along the entire trap lobe surface. A priming Ca2+ moiety entering the cytoplasm in the context of the AP was further potentiated by an organelle-localized calcium-induced calcium release (CICR)-like system prolonging the Ca2+ signal. While the Ca2+ transient persisted, SKOR K+ channels and AHA H+-ATPases repolarized the AP already. By counting the number of APs and long-lasting Ca2+ transients, the trap directs the different steps in the carnivorous plant's hunting cycle. VIDEO ABSTRACT.


Droseraceae , Action Potentials , Adenosine Triphosphatases , Calcium , Calcium Signaling , Glutamates , Membrane Transport Proteins , RNA , Receptors, Glutamate
5.
New Phytol ; 235(5): 1822-1835, 2022 09.
Article En | MEDLINE | ID: mdl-35510810

Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na+ ), chloride (Cl- ), potassium (K+ ) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller. In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell's polar organization and bladder-directed solute flow. RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived.


Chenopodium quinoa , Salt Tolerance , Chenopodium quinoa/genetics , Chenopodium quinoa/metabolism , Ion Transport , Ions/metabolism , Potassium/metabolism , Salinity , Salt Tolerance/physiology , Salt-Tolerant Plants/metabolism , Sodium/metabolism , Urinary Bladder/metabolism
6.
Nat Plants ; 8(2): 171-180, 2022 02.
Article En | MEDLINE | ID: mdl-35194203

Phloem transport of photoassimilates from leaves to non-photosynthetic organs, such as the root and shoot apices and reproductive organs, is crucial to plant growth and yield. For nearly 90 years, evidence has been generally consistent with the theory of a pressure-flow mechanism of phloem transport. Central to this hypothesis is the loading of osmolytes, principally sugars, into the phloem to generate the osmotic pressure that propels bulk flow. Here we used genetic and light manipulations to test whether sugar import into the phloem is required as the driving force for phloem sap flow. Using carbon-11 radiotracer, we show that a maize sucrose transporter1 (sut1) loss-of-function mutant has severely reduced export of carbon from photosynthetic leaves (only ~4% of the wild type level). Yet, the mutant remarkably maintains phloem pressure at ~100% and sap flow speeds at ~50-75% of those of wild type. Potassium (K+) abundance in the phloem was elevated in sut1 mutant leaves. Fluid dynamic modelling supports the conclusion that increased K+ loading compensated for decreased sucrose loading to maintain phloem pressure, and thereby maintained phloem transport via the pressure-flow mechanism. Furthermore, these results suggest that sap flow and transport of other phloem-mobile nutrients and signalling molecules could be regulated independently of sugar loading into the phloem, potentially influencing carbon-nutrient homoeostasis and the distribution of signalling molecules in plants encountering different environmental conditions.


Phloem , Zea mays , Plant Leaves/genetics , Plants , Sugars , Zea mays/genetics
7.
Sci Rep ; 12(1): 2851, 2022 02 18.
Article En | MEDLINE | ID: mdl-35181728

Plants do not have neurons but operate transmembrane ion channels and can get electrical excited by physical and chemical clues. Among them the Venus flytrap is characterized by its peculiar hapto-electric signaling. When insects collide with trigger hairs emerging the trap inner surface, the mechanical stimulus within the mechanosensory organ is translated into a calcium signal and an action potential (AP). Here we asked how the Ca2+ wave and AP is initiated in the trigger hair and how it is feed into systemic trap calcium-electrical networks. When Dionaea muscipula trigger hairs matures and develop hapto-electric excitability the mechanosensitive anion channel DmMSL10/FLYC1 and voltage dependent SKOR type Shaker K+ channel are expressed in the sheering stress sensitive podium. The podium of the trigger hair is interface to the flytrap's prey capture and processing networks. In the excitable state touch stimulation of the trigger hair evokes a rise in the podium Ca2+ first and before the calcium signal together with an action potential travel all over the trap surface. In search for podium ion channels and pumps mediating touch induced Ca2+ transients, we, in mature trigger hairs firing fast Ca2+ signals and APs, found OSCA1.7 and GLR3.6 type Ca2+ channels and ACA2/10 Ca2+ pumps specifically expressed in the podium. Like trigger hair stimulation, glutamate application to the trap directly evoked a propagating Ca2+ and electrical event. Given that anesthetics affect K+ channels and glutamate receptors in the animal system we exposed flytraps to an ether atmosphere. As result propagation of touch and glutamate induced Ca2+ and AP long-distance signaling got suppressed, while the trap completely recovered excitability when ether was replaced by fresh air. In line with ether targeting a calcium channel addressing a Ca2+ activated anion channel the AP amplitude declined before the electrical signal ceased completely. Ether in the mechanosensory organ did neither prevent the touch induction of a calcium signal nor this post stimulus decay. This finding indicates that ether prevents the touch activated, glr3.6 expressing base of the trigger hair to excite the capture organ.


Calcium/chemistry , Droseraceae/physiology , Electricity , Hair/physiology , Action Potentials/genetics , Anesthetics/pharmacology , Calcium/metabolism , Calcium Channels/genetics , Droseraceae/drug effects , Ether/pharmacology , Oxylipins/chemistry , Plant Leaves/genetics , Plant Leaves/growth & development , Signal Transduction/genetics , Touch/physiology , Touch Perception/genetics , Touch Perception/physiology
8.
Curr Biol ; 31(16): 3575-3585.e9, 2021 08 23.
Article En | MEDLINE | ID: mdl-34233161

Plants, as sessile organisms, gained the ability to sense and respond to biotic and abiotic stressors to survive severe changes in their environments. The change in our climate comes with extreme dry periods but also episodes of flooding. The latter stress condition causes anaerobiosis-triggered cytosolic acidosis and impairs plant function. The molecular mechanism that enables plant cells to sense acidity and convey this signal via membrane depolarization was previously unknown. Here, we show that acidosis-induced anion efflux from Arabidopsis (Arabidopsis thaliana) roots is dependent on the S-type anion channel AtSLAH3. Heterologous expression of SLAH3 in Xenopus oocytes revealed that the anion channel is directly activated by a small, physiological drop in cytosolic pH. Acidosis-triggered activation of SLAH3 is mediated by protonation of histidine 330 and 454. Super-resolution microscopy analysis showed that the increase in cellular proton concentration switches SLAH3 from an electrically silent channel dimer into its active monomeric form. Our results show that, upon acidification, protons directly switch SLAH3 to its open configuration, bypassing kinase-dependent activation. Moreover, under flooding conditions, the stress response of Arabidopsis wild-type (WT) plants was significantly higher compared to SLAH3 loss-of-function mutants. Our genetic evidence of SLAH3 pH sensor function may guide the development of crop varieties with improved stress tolerance.


Arabidopsis Proteins , Arabidopsis , Floods , Ion Channels , Stress, Physiological , Animals , Anions/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ion Channels/genetics , Ion Channels/metabolism , Oocytes , Xenopus
9.
Sci Adv ; 7(28)2021 Jul.
Article En | MEDLINE | ID: mdl-34244145

Guard cells control the aperture of plant stomata, which are crucial for global fluxes of CO2 and water. In turn, guard cell anion channels are seen as key players for stomatal closure, but is activation of these channels sufficient to limit plant water loss? To answer this open question, we used an optogenetic approach based on the light-gated anion channelrhodopsin 1 (GtACR1). In tobacco guard cells that express GtACR1, blue- and green-light pulses elicit Cl- and NO3 - currents of -1 to -2 nA. The anion currents depolarize the plasma membrane by 60 to 80 mV, which causes opening of voltage-gated K+ channels and the extrusion of K+ As a result, continuous stimulation with green light leads to loss of guard cell turgor and closure of stomata at conditions that provoke stomatal opening in wild type. GtACR1 optogenetics thus provides unequivocal evidence that opening of anion channels is sufficient to close stomata.

10.
Sci Rep ; 11(1): 1438, 2021 01 14.
Article En | MEDLINE | ID: mdl-33446898

Upon stimulation, plants elicit electrical signals that can travel within a cellular network analogous to the animal nervous system. It is well-known that in the human brain, voltage changes in certain regions result from concerted electrical activity which, in the form of action potentials (APs), travels within nerve-cell arrays. Electro- and magnetophysiological techniques like electroencephalography, magnetoencephalography, and magnetic resonance imaging are used to record this activity and to diagnose disorders. Here we demonstrate that APs in a multicellular plant system produce measurable magnetic fields. Using atomic optically pumped magnetometers, biomagnetism associated with electrical activity in the carnivorous Venus flytrap, Dionaea muscipula, was recorded. Action potentials were induced by heat stimulation and detected both electrically and magnetically. Furthermore, the thermal properties of ion channels underlying the AP were studied. Beyond proof of principle, our findings pave the way to understanding the molecular basis of biomagnetism in living plants. In the future, magnetometry may be used to study long-distance electrical signaling in a variety of plant species, and to develop noninvasive diagnostics of plant stress and disease.


Action Potentials/physiology , Carnivorous Plant/physiology , Droseraceae/physiology , Signal Transduction/physiology
11.
Plant Physiol ; 187(4): 2017-2031, 2021 12 04.
Article En | MEDLINE | ID: mdl-35235668

In Eukaryotes, long-distance and rapid signal transmission is required in order to be able to react fast and flexibly to external stimuli. This long-distance signal transmission cannot take place by diffusion of signal molecules from the site of perception to the target tissue, as their speed is insufficient. Therefore, for adequate stimulus transmission, plants as well as animals make use of electrical signal transmission, as this can quickly cover long distances. This update summarises the most important advances in plant electrical signal transduction with a focus on the carnivorous Venus flytrap. It highlights the different types of electrical signals, examines their underlying ion fluxes and summarises the carnivorous processes downstream of the electrical signals.


Biological Transport/drug effects , Carnivorous Plant/growth & development , Cell Communication , Droseraceae/growth & development , Electric Stimulation , Signal Transduction/drug effects , Soil/chemistry
12.
PLoS Biol ; 18(12): e3000964, 2020 12.
Article En | MEDLINE | ID: mdl-33296375

The carnivorous plant Dionaea muscipula harbors multicellular trigger hairs designed to sense mechanical stimuli upon contact with animal prey. At the base of the trigger hair, mechanosensation is transduced into an all-or-nothing action potential (AP) that spreads all over the trap, ultimately leading to trap closure and prey capture. To reveal the molecular basis for the unique functional repertoire of this mechanoresponsive plant structure, we determined the transcriptome of D. muscipula's trigger hair. Among the genes that were found to be highly specific to the trigger hair, the Shaker-type channel KDM1 was electrophysiologically characterized as a hyperpolarization- and acid-activated K+-selective channel, thus allowing the reuptake of K+ ions into the trigger hair's sensory cells during the hyperpolarization phase of the AP. During trap development, the increased electrical excitability of the trigger hair is associated with the transcriptional induction of KDM1. Conversely, when KDM1 is blocked by Cs+ in adult traps, the initiation of APs in response to trigger hair deflection is reduced, and trap closure is suppressed. KDM1 thus plays a dominant role in K+ homeostasis in the context of AP and turgor formation underlying the mechanosensation of trigger hair cells and thus D. muscipula's hapto-electric signaling.


Droseraceae/genetics , Droseraceae/metabolism , Potassium Channels/metabolism , Action Potentials/physiology , Biological Transport , Electrophysiological Phenomena , Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Ions , Mechanoreceptors/metabolism , Mechanoreceptors/physiology , Plant Leaves/physiology , Potassium/metabolism , Potassium Channels/physiology , Signal Transduction , Transcriptome/genetics
14.
Nature ; 585(7826): 569-573, 2020 09.
Article En | MEDLINE | ID: mdl-32846426

Perception of biotic and abiotic stresses often leads to stomatal closure in plants1,2. Rapid influx of calcium ions (Ca2+) across the plasma membrane has an important role in this response, but the identity of the Ca2+ channels involved has remained elusive3,4. Here we report that the Arabidopsis thaliana Ca2+-permeable channel OSCA1.3 controls stomatal closure during immune signalling. OSCA1.3 is rapidly phosphorylated upon perception of pathogen-associated molecular patterns (PAMPs). Biochemical and quantitative phosphoproteomics analyses reveal that the immune receptor-associated cytosolic kinase BIK1 interacts with and phosphorylates the N-terminal cytosolic loop of OSCA1.3 within minutes of treatment with the peptidic PAMP flg22, which is derived from bacterial flagellin. Genetic and electrophysiological data reveal that OSCA1.3 is permeable to Ca2+, and that BIK1-mediated phosphorylation on its N terminus increases this channel activity. Notably, OSCA1.3 and its phosphorylation by BIK1 are critical for stomatal closure during immune signalling, and OSCA1.3 does not regulate stomatal closure upon perception of abscisic acid-a plant hormone associated with abiotic stresses. This study thus identifies a plant Ca2+ channel and its activation mechanisms underlying stomatal closure during immune signalling, and suggests specificity in Ca2+ influx mechanisms in response to different stresses.


Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Arabidopsis/metabolism , Calcium Channels/metabolism , Calcium/metabolism , Plant Immunity , Plant Stomata/immunology , Plant Stomata/metabolism , Abscisic Acid/metabolism , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Signal Transduction
15.
Proc Natl Acad Sci U S A ; 117(34): 20920-20925, 2020 08 25.
Article En | MEDLINE | ID: mdl-32788371

In plants, environmental stressors trigger plasma membrane depolarizations. Being electrically interconnected via plasmodesmata, proper functional dissection of electrical signaling by electrophysiology is basically impossible. The green alga Chlamydomonas reinhardtii evolved blue light-excited channelrhodopsins (ChR1, 2) to navigate. When expressed in excitable nerve and muscle cells, ChRs can be used to control the membrane potential via illumination. In Arabidopsis plants, we used the algal ChR2-light switches as tools to stimulate plasmodesmata-interconnected photosynthetic cell networks by blue light and monitor the subsequent plasma membrane electrical responses. Blue-dependent stimulations of ChR2 expressing mesophyll cells, resting around -160 to -180 mV, reproducibly depolarized the membrane potential by 95 mV on average. Following excitation, mesophyll cells recovered their prestimulus potential not without transiently passing a hyperpolarization state. By combining optogenetics with voltage-sensing microelectrodes, we demonstrate that plant plasma membrane AHA-type H+-ATPase governs the gross repolarization process. AHA2 protein biochemistry and functional expression analysis in Xenopus oocytes indicates that the capacity of this H+ pump to recharge the membrane potential is rooted in its voltage- and pH-dependent functional anatomy. Thus, ChR2 optogenetics appears well suited to noninvasively expose plant cells to signal specific depolarization signatures. From the responses we learn about the molecular processes, plants employ to channel stress-associated membrane excitations into physiological responses.


Cell Membrane/metabolism , Channelrhodopsins/metabolism , Proton Pumps/metabolism , Adenosine Triphosphatases/metabolism , Algal Proteins/metabolism , Channelrhodopsins/physiology , Chlamydomonas reinhardtii/metabolism , Color , Hydrogen-Ion Concentration , Light , Membrane Potentials/physiology , Optogenetics/methods , Proton Pumps/physiology , Rhodopsin/metabolism , Signal Transduction
17.
Curr Biol ; 28(19): 3075-3085.e7, 2018 10 08.
Article En | MEDLINE | ID: mdl-30245105

Soil salinity is destroying arable land and is considered to be one of the major threats to global food security in the 21st century. Therefore, the ability of naturally salt-tolerant halophyte plants to sequester large quantities of salt in external structures, such as epidermal bladder cells (EBCs), is of great interest. Using Chenopodium quinoa, a pseudo-cereal halophyte of great economic potential, we have shown previously that, upon removal of salt bladders, quinoa becomes salt sensitive. In this work, we analyzed the molecular mechanism underlying the unique salt dumping capabilities of bladder cells in quinoa. The transporters differentially expressed in the EBC transcriptome and functional electrophysiological testing of key EBC transporters in Xenopus oocytes revealed that loading of Na+ and Cl- into EBCs is mediated by a set of tailored plasma and vacuole membrane-based sodium-selective channel and chloride-permeable transporter.


Chenopodium quinoa/metabolism , Salt-Tolerant Plants/metabolism , Vacuoles/metabolism , Epidermal Cells/metabolism , Epidermal Cells/physiology , Membrane Transport Proteins , Plant Proteins/metabolism , Salinity , Salt Tolerance/physiology , Sodium/metabolism , Sodium Channels/metabolism , Soil/chemistry , Stress, Physiological , Transcriptome
18.
Nat Commun ; 9(1): 1174, 2018 03 21.
Article En | MEDLINE | ID: mdl-29563504

Auxin is a key regulator of plant growth and development, but the causal relationship between hormone transport and root responses remains unresolved. Here we describe auxin uptake, together with early steps in signaling, in Arabidopsis root hairs. Using intracellular microelectrodes we show membrane depolarization, in response to IAA in a concentration- and pH-dependent manner. This depolarization is strongly impaired in aux1 mutants, indicating that AUX1 is the major transporter for auxin uptake in root hairs. Local intracellular auxin application triggers Ca2+ signals that propagate as long-distance waves between root cells and modulate their auxin responses. AUX1-mediated IAA transport, as well as IAA- triggered calcium signals, are blocked by treatment with the SCFTIR1/AFB - inhibitor auxinole. Further, they are strongly reduced in the tir1afb2afb3 and the cngc14 mutant. Our study reveals that the AUX1 transporter, the SCFTIR1/AFB receptor and the CNGC14 Ca2+ channel, mediate fast auxin signaling in roots.


Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Calcium Signaling/genetics , F-Box Proteins/genetics , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Plant Roots/metabolism , Receptors, Cell Surface/genetics , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Biological Transport , Calcium/metabolism , Cations, Divalent , Cyclic Nucleotide-Gated Cation Channels/genetics , Cyclic Nucleotide-Gated Cation Channels/metabolism , F-Box Proteins/metabolism , Hydrogen-Ion Concentration , Indoleacetic Acids/pharmacology , Microelectrodes , Mutation , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Roots/drug effects , Plants, Genetically Modified , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Receptors, Cell Surface/metabolism
19.
Proc Natl Acad Sci U S A ; 114(18): 4822-4827, 2017 05 02.
Article En | MEDLINE | ID: mdl-28416693

The Venus flytrap Dionaea muscipula captures insects and consumes their flesh. Prey contacting touch-sensitive hairs trigger traveling electrical waves. These action potentials (APs) cause rapid closure of the trap and activate secretory functions of glands, which cover its inner surface. Such prey-induced haptoelectric stimulation activates the touch hormone jasmonate (JA) signaling pathway, which initiates secretion of an acidic hydrolase mixture to decompose the victim and acquire the animal nutrients. Although postulated since Darwin's pioneering studies, these secretory events have not been recorded so far. Using advanced analytical and imaging techniques, such as vibrating ion-selective electrodes, carbon fiber amperometry, and magnetic resonance imaging, we monitored stimulus-coupled glandular secretion into the flytrap. Trigger-hair bending or direct application of JA caused a quantal release of oxidizable material from gland cells monitored as distinct amperometric spikes. Spikes reminiscent of exocytotic events in secretory animal cells progressively increased in frequency, reaching steady state 1 d after stimulation. Our data indicate that trigger-hair mechanical stimulation evokes APs. Gland cells translate APs into touch-inducible JA signaling that promotes the formation of secretory vesicles. Early vesicles loaded with H+ and Cl- fuse with the plasma membrane, hyperacidifying the "green stomach"-like digestive organ, whereas subsequent ones carry hydrolases and nutrient transporters, together with a glutathione redox moiety, which is likely to act as the major detected compound in amperometry. Hence, when glands perceive the haptoelectrical stimulation, secretory vesicles are tailored to be released in a sequence that optimizes digestion of the captured animal.


Droseraceae/physiology , Exocytosis/physiology , Insecta , Signal Transduction/physiology , Animals , Droseraceae/ultrastructure
20.
Curr Biol ; 26(3): 286-95, 2016 Feb 08.
Article En | MEDLINE | ID: mdl-26804557

Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na(+)-rich animal and nutrition for the plant.


Action Potentials , Cyclopentanes/metabolism , Droseraceae/physiology , Oxylipins/metabolism , Signal Transduction , Sodium/metabolism , Animals , Food Chain , Insecta , Plant Leaves/physiology
...