Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38138044

RESUMEN

It is generally accepted that microbes play a critical role in maintaining gut barrier function, making them ideal to target in order to mitigate the effects of intestinal diseases such as inflammatory bowel disease with specialist supplementations such as probiotic or postbiotic preparations. In this study, specific strains of Lactobacillus helvictus both live and inactivated and Lactobacillus plantarum inactivated were fed to zebrafish at an inclusion level of 6 × 106 cells/g in order to assess the effects on gut barrier function and protection. Taken together, our results indicate that dietary administration of pro- or postbiotics strengthens the gut barrier function and innate immunity of healthy zebrafish in a strain-specific and process-dependent way. With some differences in the response intensity, the three treatments led to increased intestinal villi length and proportion of IELs, reinforcement of the GC population and up-regulated expression of biomarkers of AMP production and tight junction zona-occludin 2a (zo-2a). In addition, LPPost had an impact on the adaptive immune response, and we hypothesized that it conferred the potential to drive Th17/ILC3 immunity, as suggested by its effect on the gene expression of il22, of different AMPs, and the expression of zo2a. Moreover, LPPost showed the potential to drive Th1/ILC1-like immunity, with a higher percentage of CD8+ cells and higher ifnγ gene expression. In summary, the use of inactivated Lactobacilli species in this study represented a promising strategy for improving barrier function and regulating the immune fate of the intestinal mucosa in a strain-specific way.

2.
Curr Res Food Sci ; 7: 100603, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840697

RESUMEN

Non-conventional yeast species, or non-Saccharomyces yeasts, are increasingly recognized for their involvement in fermented foods. Many of them exhibit probiotic characteristics that are mainly due to direct contacts with other cell types through various molecular components of their cell wall. The biochemical composition and/or the molecular structure of the cell wall components are currently considered the primary determinant of their probiotic properties. Here we first present the techniques that are used to extract and analyze the cell wall components of food industry-related non-Saccharomyces yeasts. We then review the current understanding of the cell wall composition and structure of each polysaccharide from these yeasts. Finally, the data exploring the potential beneficial role of their cell wall components, which could be a source of innovative functional ingredients, are discussed. Such research would allow the development of high value-added products and provide the food industry with novel inputs beyond the well-established S. cerevisiae.

3.
Front Immunol ; 14: 1158390, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304290

RESUMEN

With the rising awareness of antimicrobial resistance, the development and use of functional feed additives (FFAs) as an alternative prophylactic approach to improve animal health and performance is increasing. Although the FFAs from yeasts are widely used in animal and human pharma applications already, the success of future candidates resides in linking their structural functional properties to their efficacy in vivo. Herein, this study aimed to characterise the biochemical and molecular properties of four proprietary yeast cell wall extracts from S. cerevisiae in relation to their potential effect on the intestinal immune responses when given orally. Dietary supplementation of the YCW fractions identified that the α-mannan content was a potent driver of mucus cell and intraepithelial lymphocyte hyperplasia within the intestinal mucosal tissue. Furthermore, the differences in α-mannan and ß-1,3-glucans chain lengths of each YCW fraction affected their capacity to be recognised by different PRRs. As a result, this affected the downstream signalling and shaping of the innate cytokine milieu to elicit the preferential mobilisation of effector T-helper cell subsets namely Th17, Th1, Tr1 and FoxP3+-Tregs. Together these findings demonstrate the importance of characterising the molecular and biochemical properties of YCW fractions when assessing and concluding their immune potential. Additionally, this study offers novel perspectives in the development specific YCW fractions derived from S. cerievisae for use in precision animal feeds.


Asunto(s)
Saccharomyces cerevisiae , Pez Cebra , Animales , Humanos , Mananos/farmacología , Inmunidad Innata , Intestinos , Mucosa Intestinal , Pared Celular , Extractos Vegetales
4.
Plant Physiol ; 192(2): 1000-1015, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36856724

RESUMEN

Cell wall synthesis and protein glycosylation require the import of nucleotide diphosphate-sugar conjugates into the Golgi that must be counterbalanced by phosphate (Pi) export. Numerous Golgi nucleotide-sugar transporters have been characterized, but transporters mediating Golgi Pi export remain poorly understood. We used plant and yeast genetics to characterize the role of 2 Arabidopsis (Arabidopsis thaliana) proteins possessing an EXS domain, namely ERD1A and ERD1B, in Golgi Pi homeostasis. ERD1A and ERD1B localized in cis-Golgi and were broadly expressed in vegetative and reproductive tissues. We identified ERD1 putative orthologs in algae, bryophytes, and vascular plants. Expressing ERD1A and ERD1B in yeast complemented the erd1 mutant phenotype of cellular Pi loss via exocytosis associated with reduced Golgi Pi export. The Arabidopsis erd1a mutant had a similar phenotype of apoplastic Pi loss dependent on exocytosis. ERD1A overexpression in Nicotiana benthamiana and Arabidopsis led to partial mislocalization of ERD1A to the plasma membrane and specific Pi export to the apoplastic space. Arabidopsis erd1a had defects in cell wall biosynthesis, which were associated with reduced shoot development, hypocotyl growth, cell wall extensibility, root elongation, pollen germination, pollen tube elongation, and fertility. We identified ERD1 proteins as Golgi Pi exporters that are essential for optimal plant growth and fertility.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Saccharomyces cerevisiae/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desarrollo de la Planta , Nucleótidos/metabolismo
5.
Pathogens ; 10(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34832664

RESUMEN

The yeast Saccharomyces cerevisiae has a remarkable ability to adapt its lifestyle to fluctuating or hostile environmental conditions. This adaptation most often involves morphological changes such as pseudofilaments, biofilm formation, or cell aggregation in the form of flocs. A prerequisite for these phenotypic changes is the ability to self-adhere and to adhere to abiotic surfaces. This ability is conferred by specialized surface proteins called flocculins, which are encoded by the FLO genes family in this yeast species. This mini-review focuses on the flocculin encoded by FLO11, which differs significantly from other flocculins in domain sequence and mode of genetic and epigenetic regulation, giving it an impressive plasticity that enables yeast cells to swiftly adapt to hostile environments or into new ecological niches. Furthermore, the common features of Flo11p with those of adhesins from pathogenic yeasts make FLO11 a good model to study the molecular mechanism underlying cell adhesion and biofilm formation, which are part of the initial step leading to fungal infections.

6.
Elife ; 102021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34467855

RESUMEN

Fungal adhesins (Als) or flocculins are family of cell surface proteins that mediate adhesion to diverse biotic and abiotic surfaces. A striking characteristic of Als proteins originally identified in the pathogenic Candida albicans is to form functional amyloids that mediate cis-interaction leading to the formation of adhesin nanodomains and trans-interaction between amyloid sequences of opposing cells. In this report, we show that flocculins encoded by FLO11 in Saccharomyces cerevisiae behave like adhesins in C. albicans. To do so, we show that the formation of nanodomains under an external physical force requires a threshold number of amyloid-forming sequences in the Flo11 protein. Then, using a genome editing approach, we constructed strains expressing variants of the Flo11 protein under the endogenous FLO11 promoter, leading to the demonstration that the loss of amyloid-forming sequences strongly reduces cell-cell interaction but has no effect on either plastic adherence or invasive growth in agar, both phenotypes being dependent on the N- and C-terminal ends of Flo11p. Finally, we show that the location of Flo11 is not altered either by the absence of amyloid-forming sequences or by the removal of the N- or C-terminus of the protein.


Asunto(s)
Amiloide/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Amiloide/química , Amiloide/genética , Interacciones Hidrofóbicas e Hidrofílicas , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Mutación , Nanoestructuras , Conformación Proteica en Lámina beta , Dominios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad
8.
Sci Rep ; 11(1): 4496, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627754

RESUMEN

Yeasts are becoming popular as novel ingredients in fish feeds because of their potential to support better growth and concomitantly ensure good fish health. Here, three species of yeasts (Cyberlindnera jadinii, Blastobotrys adeninivorans and Wickerhamomyces anomalus), grown on wood sugars and hydrolysates of chicken were subjected to two down-stream processes, either direct heat-inactivation or autolysis, and the feed potential of the resulting yeast preparations was assessed through a feeding trial with Atlantic salmon fry. Histological examination of distal intestine based on widening of lamina propria, showed that autolyzed W. anomalus was effective in alleviating mild intestinal enteritis, while only limited effects were observed for other yeasts. Our results showed that the functionality of yeast in counteracting intestinal enteritis in Atlantic salmon was dependent on both the type of yeast and the down-stream processing method, and demonstrated that C. jadinii and W. anomalus have promising effects on gut health of Atlantic salmon.


Asunto(s)
Salmo salar/fisiología , Levaduras/química , Alimentación Animal , Animales , Acuicultura/métodos , Pollos , Enteritis/fisiopatología , Mucosa Intestinal/fisiología
9.
Sci Rep ; 9(1): 11100, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31367003

RESUMEN

Antigen 43 (Ag43) is a cell-surface exposed protein of Escherichia coli secreted by the Type V, subtype a, secretion system (T5aSS) and belonging to the family of self-associating autotransporters (SAATs). These modular proteins, comprising a cleavable N-terminal signal peptide, a surface-exposed central passenger and an outer membrane C-terminal translocator, self-recognise in a Velcro-like handshake mechanism. A phylogenetic network analysis focusing on the passenger revealed for the first time that they actually distribute into four distinct classes, namely C1, C2, C3 and C4. Structural alignment and modelling analyses demonstrated these classes arose from shuffling of two different subdomains within the Ag43 passengers. Functional analyses revealed that homotypic interactions occur for all Ag43 classes but significant differences in the sedimentation kinetics and aggregation state were present when Ag43C3 was expressed. In contrast, heterotypic interaction occurred in a very limited number of cases. Single cell-force spectroscopy demonstrated the importance of specific as well as nonspecific interactions in mediating Ag43-Ag43 recognition. We propose that structural differences in the subdomains of the Ag43 classes account for different autoaggregation dynamics and propensities to co-interact.


Asunto(s)
Adhesinas de Escherichia coli/genética , Variación Antigénica/genética , Antígenos Bacterianos/genética , Escherichia coli/genética , Escherichia coli/fisiología , Adhesión Bacteriana/genética , Adhesión Bacteriana/fisiología , Proteínas de la Membrana Bacteriana Externa/genética , Biopelículas/crecimiento & desarrollo , Transporte Biológico/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Filogenia , Sistemas de Secreción Tipo V/genética
10.
Int J Biol Macromol ; 134: 379-389, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31082425

RESUMEN

This study reports biosynthesis of gold-nanoparticles (AuNPs) by using ß-d-glucans isolated from the yeast Yarrowia lypolitica D1. ß-d-glucans serve as reducing and stabilizing mediators that induce the formation of AuNPs on the outer surface of the own ß-d-glucan. The systems were physicochemically characterized by ultraviolet visible (UV-Vis) spectroscopy, high-resolution transmission electron microscopy (HR-TEM), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), and dynamic light scattering (DLS) analyses. The results revealed the generation of AuNPs with quasi-spherical shape or large one dimension (1D) gold-nanostructures (AuNSs) depending on the HAuCl4 concentration. A cytotoxic study was assessed in mouse splenocytes. Contrary to that expected, important cytotoxicity was found in all ß-d-gluc+AuNPs systems by an oxidative stress increase. This study discusses the cytotoxic mechanism, suggesting that the resulting ß-d-gluc+AuNPs systems may not be candidates for the formulation of immunostimulants or nanocarriers for biomedical applications.


Asunto(s)
Citotoxicidad Inmunológica , Glucanos , Oro , Nanopartículas del Metal , Estrés Oxidativo , Bazo/citología , Bazo/fisiología , Animales , Antioxidantes , Biomarcadores , Catalasa , Supervivencia Celular/inmunología , Citocinas/genética , Citocinas/metabolismo , Expresión Génica , Glucanos/química , Oro/química , Tecnología Química Verde , Leucocitos/inmunología , Leucocitos/metabolismo , Masculino , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Ratones , Óxido Nítrico/metabolismo , Fagocitosis/inmunología , Estallido Respiratorio
11.
Cell Surf ; 5: 100027, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32743143

RESUMEN

The yeast cell wall is composed of mannoproteins, ß-1,3/ß-1, 6-glucans and chitin. Each of these components has technological properties that are relevant for industrial and medical applications. To address issues related to cell wall structure and alteration in response to stress or conditioning processes, AFM dendritips were functionalized with biomolecules that are specific for each of the wall components, which was wheat germ agglutinin (WGA) for chitin, concanavalin A (ConA) for mannans and anti-ß-1,3/anti-ß-1,6-glucan antibodies for ß-1,3/ß-1,6-glucans. Binding specificity of these biomolecules were validated using penta-N-acetylchitopentaose, α-mannans, laminarin (short ß-1,3-glucan chain) and gentiobiose (2 glucose units linked in ß 1→6) immobilized on epoxy glass slides. Dynamic force spectroscopy was employed to obtain kinetic and thermodynamic information on the intermolecular interaction of the binary complexes using the model of Friddle-Noy-de Yoreo. Using this model, transition state distance xt, dissociate rate koff and the lowest force (feq ) required to break the intermolecular bond of the complexes were approximated. These functionalized dendritips were then used to probe the yeast cell surface treated with a bacterial protease. As expected, this treatment, which removed the outer layer of the cell wall, gave accessibility to the inner layer composed of ß-glucans. Likewise, bud scars were nicely localized using AFM dendritip bearing the WGA probe. To conclude, these functionalized AFM dendritips constitute a new toolbox that can be used to investigate cell surface structure and organization in response to a wide arrays of cultures and process conditions.

12.
Front Microbiol ; 8: 1806, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29085340

RESUMEN

The yeast cell is surrounded by a cell wall conferring protection and resistance to environmental conditions that can be harmful. Identify the molecular cues (genes) which shape the biochemical composition and the nanomechanical properties of the cell wall and the links between these two parameters represent a major issue in the understanding of the biogenesis and the molecular assembly of this essential cellular structure, which may have consequences in diverse biotechnological applications. We addressed this question in two ways. Firstly, we compared the biochemical and biophysical properties using atomic force microscopy (AFM) methods of 4 industrial strains with the laboratory sequenced strain BY4743 and used transcriptome data of these strains to infer biological hypothesis about differences of these properties between strains. This comparative approach showed a 4-6-fold higher hydrophobicity of industrial strains that was correlated to higher expression of genes encoding adhesin and adhesin-like proteins and not to their higher mannans content. The second approach was to employ a multivariate statistical analysis to identify highly correlated variables among biochemical, biophysical and genes expression data. Accordingly, we found a tight association between hydrophobicity and adhesion events that positively correlated with a set of 22 genes in which the main enriched GO function was the sterol metabolic process. We also identified a strong association of ß-1,3-glucans with contour length that corresponds to the extension of mannans chains upon pulling the mannosyl units with the lectin-coated AFM tips. This association was positively correlated with a group of 27 genes in which the seripauperin multigene family was highly documented and negatively connected with a set of 23 genes whose main GO biological process was sulfur assimilation/cysteine biosynthetic process. On the other hand, the elasticity modulus was found weakly associated with levels of ß-1,6-glucans, and this biophysical variable was positively correlated with a set of genes implicated in microtubules polymerization, tubulin folding and mitotic organization.

13.
Appl Environ Microbiol ; 82(15): 4789-4801, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27235439

RESUMEN

UNLABELLED: A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressing MSN2 was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells. IMPORTANCE: Ethanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell wall rigidity (or stiffness). We ascribed this effect to the action of ethanol perturbing the cell membrane integrity and hence proposed that the cell membrane contributes to the cell wall nanomechanical properties.


Asunto(s)
Membrana Celular/metabolismo , Pared Celular/metabolismo , Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/genética , Membrana Celular/ultraestructura , Pared Celular/genética , Pared Celular/ultraestructura , Microscopía de Fuerza Atómica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura
14.
mBio ; 6(4): e00986, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26220968

RESUMEN

UNLABELLED: The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked ß-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. IMPORTANCE: The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by a network of cell wall polysaccharides, which are remodeled in response to growth conditions and environmental stress. However, little is known about how cell wall elasticity is regulated and how it affects adaptation to stresses such as sudden changes in osmolarity. We show that elasticity is critical for survival under conditions of osmotic shock, before stress signaling pathways have time to induce gene expression and drive glycerol accumulation. Critical cell wall remodeling enzymes control cell wall flexibility, and its regulation is strongly dependent on host nutritional inputs. We also demonstrate an entirely new level of cell wall dynamism, where significant architectural changes and structural realignment occur within seconds of an osmotic shock.


Asunto(s)
Candida albicans/enzimología , Candida albicans/fisiología , Pared Celular/enzimología , Pared Celular/metabolismo , Elasticidad , Enzimas/metabolismo , Presión Osmótica , Medios de Cultivo/química , Glucosa/metabolismo , Ácido Láctico/metabolismo
15.
FEMS Yeast Res ; 15(2)2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25762053

RESUMEN

The Saccharomyces cerevisiae cell surface is endowed with some relevant technological properties, notably antimicrobial and biosorption activities. For these purposes, yeasts are usually processed and packaged in an 'autolysed/dried' formula, which may have some impacts on cell surface properties. In this report, we showed using a combination of biochemical, biophysical and molecular methods that the composition of the cell wall of two wine yeast strains was not altered by the autolysis process. In contrast, this process altered the nanomechanical properties as shown by a 2- to 4-fold increased surface roughness and to a higher adhesion to the atomic force microscope tips of the autolysed cells as compared to live yeast cells. Besides, we found that the two strains harboured differences in biomechanical properties that could be due in part to higher levels of mannan in one of them, and to the fact that the surface of this mannan-enriched strain is decorated with highly adhesive patches forming nanodomains. The presence of these nanodomains could be correlated with the upregulation of flocculin encoding FLO11 as well as to higher expression of few other genes encoding cell wall mannoproteins in this mannan-enriched strain as compared to the other strain.


Asunto(s)
Autólisis , Fenómenos Biofísicos , Pared Celular/fisiología , Microbiología Industrial , Saccharomyces cerevisiae/fisiología , Adhesión Celular , Microscopía de Fuerza Atómica , Propiedades de Superficie
16.
Nat Protoc ; 10(1): 199-204, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25551664

RESUMEN

Atomic force microscopy (AFM) is a useful tool for studying the morphology or the nanomechanical and adhesive properties of live microorganisms under physiological conditions. However, to perform AFM imaging, living cells must be immobilized firmly enough to withstand the lateral forces exerted by the scanning tip, but without denaturing them. This protocol describes how to immobilize living cells, ranging from spores of bacteria to yeast cells, into polydimethylsiloxane (PDMS) stamps, with no chemical or physical denaturation. This protocol generates arrays of living cells, allowing statistically relevant measurements to be obtained from AFM measurements, which can increase the relevance of results. The first step of the protocol is to generate a microstructured silicon master, from which many microstructured PDMS stamps can be replicated. Living cells are finally assembled into the microstructures of these PDMS stamps using a convective and capillary assembly. The complete procedure can be performed in 1 week, although the first step is done only once, and thus repeats can be completed within 1 d.


Asunto(s)
Células Inmovilizadas/metabolismo , Microscopía de Fuerza Atómica/métodos , Análisis de Matrices Tisulares/métodos , Dimetilpolisiloxanos
17.
Nanomedicine ; 11(1): 57-65, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25101882

RESUMEN

Candida albicans is an opportunistic pathogen. It adheres to mammalian cells through a variety of adhesins that interact with host ligands. The spatial organization of these adhesins on the cellular interface is however poorly understood, mainly because of the lack of an instrument able to track single molecules on single cells. In this context, the atomic force microscope (AFM) makes it possible to analyze the force signature of single proteins on single cells. The present study is dedicated to the mapping of the adhesive properties of C. albicans cells. We observed that the adhesins at the cell surface were organized in nanodomains composed of free or aggregated mannoproteins. This was demonstrated by the use of functionalized AFM tips and synthetic amyloid forming/disrupting peptides. This direct visualization of amyloids nanodomains will help in understanding the virulence factors of C. albicans.


Asunto(s)
Candida albicans/metabolismo , Microscopía de Fuerza Atómica/métodos , Amiloide/química , Biopelículas , Adhesión Celular , Membrana Celular/metabolismo , Pared Celular/metabolismo , Concanavalina A/química , Dimetilpolisiloxanos/química , Fibronectinas/química , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Nanopartículas/química , Péptidos/química , Unión Proteica , Estructura Terciaria de Proteína , Temperatura
18.
FEMS Yeast Res ; 14(6): 933-47, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25041403

RESUMEN

A reliable method to determine cell wall polysaccharides composition in yeast is presented, which combines acid and enzymatic hydrolysis. Sulphuric acid treatment is used to determine mannans, whereas specific hydrolytic enzymes are employed in a two sequential steps to quantify chitin and the proportion of ß-(1,3) and ß-(1,6)-glucan in the total ß-glucan of the cell wall. In the first step, chitin and ß-(1,3)-glucan were hydrolysed into their corresponding monomers N-acetylglucosamine and glucose, respectively, by the combined action of a chitinase from Streptomyces griseus and a pure preparation of endo/exo-ß-(1,3)-glucanase from Trichoderma species. This step was followed by addition of recombinant endo-ß-(1,6)-glucanase from Trichoderma harzianum with ß-glucosidase from Aspergillus niger to hydrolyse the remaining ß-glucan. This latter component corresponded to a highly branched ß-(1,6)-glucan that contained about 75-80% of linear ß-(1,6)-glucose linked units as deduced from periodate oxidation. We validated this novel method by showing that the content of ß-(1,3), ß-(1,6)-glucan or chitin was dramatically decreased in yeast mutants defective in the biosynthesis of these cell wall components. Moreover, we found that heat shock at 42 °C in Saccharomyces cerevisiae and treatment of this yeast species and Candida albicans with the antifungal drug caspofungin resulted in 2- to 3-fold increase of chitin and in a reduction of ß-(1,3)-glucan accompanied by an increase of ß-(1,6)-glucan, whereas ethanol stress had apparently no effect on yeast cell wall composition.


Asunto(s)
Pared Celular/química , Polisacáridos Fúngicos/química , Levaduras/química , Quitina/química , Glucanos/química , Hidrólisis , Mutación , Reproducibilidad de los Resultados , Estrés Fisiológico , Levaduras/genética , Levaduras/metabolismo
19.
BMC Biol ; 12: 6, 2014 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-24468076

RESUMEN

BACKGROUND: Atomic Force Microscopy (AFM) is a polyvalent tool that allows biological and mechanical studies of full living microorganisms, and therefore the comprehension of molecular mechanisms at the nanoscale level. By combining AFM with genetical and biochemical methods, we explored the biophysical response of the yeast Saccharomyces cerevisiae to a temperature stress from 30°C to 42°C during 1 h. RESULTS: We report for the first time the formation of an unprecedented circular structure at the cell surface that takes its origin at a single punctuate source and propagates in a concentric manner to reach a diameter of 2-3 µm at least, thus significantly greater than a bud scar. Concomitantly, the cell wall stiffness determined by the Young's Modulus of heat stressed cells increased two fold with a concurrent increase of chitin. This heat-induced circular structure was not found either in wsc1Δ or bck1Δ mutants that are defective in the CWI signaling pathway, nor in chs1Δ, chs3Δ and bni1Δ mutant cells, reported to be deficient in the proper budding process. It was also abolished in the presence of latrunculin A, a toxin known to destabilize actin cytoskeleton. CONCLUSIONS: Our results suggest that this singular morphological event occurring at the cell surface is due to a dysfunction in the budding machinery caused by the heat shock and that this phenomenon is under the control of the CWI pathway.


Asunto(s)
Estructuras de la Membrana Celular/ultraestructura , Respuesta al Choque Térmico , Microscopía de Fuerza Atómica/métodos , Saccharomyces cerevisiae/ultraestructura , Actinas/metabolismo , Fenómenos Biomecánicos , Pared Celular/metabolismo , Pared Celular/ultraestructura , Quitina/metabolismo , Módulo de Elasticidad , Viabilidad Microbiana , Microscopía Fluorescente , Mutación , Saccharomyces cerevisiae/citología , Transducción de Señal , Trehalosa/metabolismo
20.
Curr Genet ; 59(4): 187-96, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24071902

RESUMEN

Over the past 20 years, the yeast cell wall has been thoroughly investigated by genetic and biochemical methods, leading to remarkable advances in the understanding of its biogenesis and molecular architecture as well as to the mechanisms by which this organelle is remodeled in response to environmental stresses. Being a dynamic structure that constitutes the frontier between the cell interior and its immediate surroundings, imaging cell surface, measuring mechanical properties of cell wall or probing cell surface proteins for localization or interaction with external biomolecules are among the most burning questions that biologists wished to address in order to better understand the structure-function relationships of yeast cell wall in adhesion, flocculation, aggregation, biofilm formation, interaction with antifungal drugs or toxins, as well as response to environmental stresses, such as temperature changes, osmotic pressure, shearing stress, etc. The atomic force microscopy (AFM) is nowadays the most qualified and developed technique that offers the possibilities to address these questions since it allows working directly on living cells to explore and manipulate cell surface properties at nanometer resolution and to analyze cell wall proteins at the single molecule level. In this minireview, we will summarize the most recent contributions made by AFM in the analysis of the biomechanical and biochemical properties of the yeast cell wall and illustrate the power of this tool to unravel unexpected effects caused by environmental stresses and antifungal agents on the surface of living yeast cells.


Asunto(s)
Pared Celular/fisiología , Pared Celular/ultraestructura , Microscopía de Fuerza Atómica/métodos , Modelos Biológicos , Saccharomyces cerevisiae/citología , Estrés Fisiológico/fisiología , Fenómenos Biomecánicos/fisiología , Pared Celular/química , Células Inmovilizadas/microbiología , Saccharomyces cerevisiae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...