Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Sports Med Open ; 10(1): 45, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38637473

BACKGROUND: Increases in maximal strength and muscle volume represent central aims of training interventions. Recent research suggested that the chronic application of stretch may be effective in inducing hypertrophy. The present systematic review therefore aimed to syntheisize the evidence on changes of strength and muscle volume following chronic static stretching. METHODS: Three data bases were sceened to conduct a systematic review with meta-analysis. Studies using randomized, controlled trials with longitudinal (≥ 2 weeks) design, investigating strength and muscle volume following static stretching in humans, were included. Study quality was rated by two examiners using the PEDro scale. RESULTS: A total of 42 studies with 1318 cumulative participants were identified. Meta-analyses using robust variance estimation showed small stretch-mediated maximal strength increases (d = 0.30 p < 0.001) with stretching duration and intervention time as significant moderators. Including all studies, stretching induced small magnitude, but significant hypertrophy effects (d = 0.20). Longer stretching durations and intervention periods as well as higher training frequencies revealed small (d = 0.26-0.28), but significant effects (p < 0.001-0.005), while lower dosage did not reach the level of significance (p = 0.13-0.39). CONCLUSIONS: While of minor effectiveness, chronic static stretching represents a possible alternative to resistance training when aiming to improve strength and increase muscle size. As a dose-response relationship may exist, higher stretch durations and frequencies as well as long program durations should be further elaborated.

2.
Sports (Basel) ; 12(4)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38668577

PURPOSE: While there is reported superior effectiveness with supervised training, it usually requires specialized exercise facilities and instructors. It is reported in the literature that high-volume stretching improves pectoralis muscles strength under supervised conditions while practical relevance is discussed. Therefore, the study objective was to compare the effects of volume equated, supervised- and self-administered home-based stretching on strength performance. METHODS: Sixty-three recreational participants were equally assigned to either a supervised static stretching, home-based stretching, or control group. The effects of 15 min pectoralis stretching, 4 days per week for 8 weeks, were assessed on dynamic and isometric bench press strength and force development. RESULTS: While there was a large magnitude maximal strength increase (p < 0.001-0.023, ƞ2 = 0.118-0.351), force development remained unaffected. Dynamic maximal strength in both groups demonstrated large magnitude increases compared to the control group (p < 0.001-0.001, d = 1.227-0.905). No differences between the intervention group for maximal strength (p = 0.518-0.821, d = 0.101-0.322) could be detected. CONCLUSIONS: The results could potentially be attributed to stretch-induced tension (mechanical overload) with subsequent anabolic adaptations, and alternative explanatory approaches are discussed. Nevertheless, home-based stretching seems a practical alternative to supervised training with potential meaningful applications in different settings.

3.
Front Sports Act Living ; 6: 1345213, 2024.
Article En | MEDLINE | ID: mdl-38299024

Introduction: Based on the assumption of maximal strength as a basic ability, several studies show a high influence of maximum strength on jumping performance in several sport athletes. However, there is a wide range of correlations from r = 0.17-0.9 between squat 1RM and jumping performance in different sports. Additionally, there are only a few studies investigating the influence of deadlift one repetition maximum (1RM) on jumping performance. Thus, this study aimed to investigate the correlations between 1RM in the deadlift on jumping performance using the countermovement jump height (CMJ) and squat jump height (SJ) considering different sports. Methods: 103 athletes with experience in the deadlift from soccer, basketball, American football, powerlifting as well as participants from different sports without any deadlift experience (control group) were included to this study. Results: Overall statistics showed a significant moderate influence of deadlift 1RM (r = 0.301-0.472) on jumping performance. However, subgroup analysis showed no significant correlation between deadlift 1RM and jumping performance in control participants, while moderate correlations could be detected in powerlifters (r = 0.34-0.39), soccer players (r = 0.437-0.46), American football players (0.584-0.62) and high correlations in basketball players (r = 0.809-0.848) showing significant influence of type of sport on correlations between deadlift maximum strength and jumping performance. Discussion: Presented results underline movement velocity- and task specificity of strength training routines which is discussed in the light of the respective sports.

4.
Eur J Appl Physiol ; 124(6): 1885-1893, 2024 Jun.
Article En | MEDLINE | ID: mdl-38240811

OBJECTIVES: Current research suggests static stretch-induced maximal strength increases and muscle hypertrophy with potential to substitute resistance-training routines. However, most studies investigated the plantar flexors. This study explored the effects of a static stretching program on maximal strength, hypertrophy and flexibility of the pectoralis major and compared the effects with those of traditional resistance training. METHODS: Eighty-one (81) active participants were allocated to either a static stretching, strength-training or control group. Pectoralis stretching was applied 15 min/day, 4 days per week for 8 weeks, while resistance training trained 3 days per week, 5 × 12 repetitions. RESULTS: There was an increase in all parameters (strength: p < 0.001, ƞ2 = 0.313, muscle thickness: p < 0.001, ƞ2 = 0.157-0.264, flexibility: p < 0.001, ƞ2 = 0.316) and a time*group interaction (strength: p = 0.001, ƞ2 = 0.154, muscle thickness: p = 0.008-0.001, ƞ2 = 0.117-0.173, flexibility: p < 0.001, ƞ2 = 0.267). Post-hoc testing showed no difference between both intervention groups regarding maximal strength and muscle thickness (p = 0.905-0.983, d = 0.036-0.087), while flexibility increased in the stretching group (p = 0.001, d = 0.789). CONCLUSION: Stretching showed increases in maximal strength and hypertrophy, which were comparable with commonly used resistance training. Based on current literature, the influence of mechanical tension as the underlying mechanism is discussed. Furthermore, as equipment and comparatively long stretching durations are requested to induce meaningful strength increases in recreationally active participants, practical application seems limited to special circumstances.


Muscle Strength , Muscle Stretching Exercises , Pectoralis Muscles , Range of Motion, Articular , Resistance Training , Humans , Resistance Training/methods , Muscle Strength/physiology , Pectoralis Muscles/physiology , Male , Female , Adult , Range of Motion, Articular/physiology , Young Adult
5.
J Strength Cond Res ; 37(10): 1993-2001, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37318350

ABSTRACT: Warneke, K, Keiner, M, Wohlann, T, Lohmann, LH, Schmitt, T, Hillebrecht, M, Brinkmann, A, Hein, A, Wirth, K, and Schiemann, S. Influence of long-lasting static stretching intervention on functional and morphological parameters in the plantar flexors: a randomised controlled trial. J Strength Cond Res 37(10): 1993-2001, 2023-Animal studies show that long-lasting stretching training can lead to significant hypertrophy and increases in maximal strength. Accordingly, previous human studies found significant improvements in maximal voluntary contraction (MVC), flexibility, and muscle thickness (MTh) using constant angle long-lasting stretching. It was hypothesized that long-lasting stretching with high intensity will lead to sufficient mechanical tension to induce muscle hypertrophy and maximal strength gains. This study examined muscle cross-sectional area (MCSA) using magnetic resonance imaging (MRI). Therefore, 45 well-trained subjects (f: 17, m: 28, age: 27.7 ± 3.0 years, height: 180.8 ± 4.9 cm, mass: 80.4 ± 7.2 kg) were assigned to an intervention group (IG) that stretched the plantar flexors 6 × 10 minutes per day for 6 weeks or a control group (CG). Data analysis was performed using 2-way ANOVA. There was a significant Time × Group interaction in MVC ( p < 0.001-0.019, ƞ 2 = 0.158-0.223), flexibility ( p < 0.001, ƞ 2 = 0.338-0.446), MTh ( p = 0.002-0.013, ƞ 2 = 0.125-0.172), and MCSA ( p = 0.003-0.014, ƞ 2 = 0.143-0.197). Post hoc analysis showed significant increases in MVC ( d = 0.64-0.76), flexibility ( d = 0.85-1.12), MTh ( d = 0.53-0.6), and MCSA ( d = 0.16-0.3) in IG compared with CG, thus confirming previous results in well-trained subjects. Furthermore, this study improved the quality for the morphological examination by investigating both heads of the gastrocnemius with MRI and sonography. Because stretching can be used passively, an application in rehabilitation settings seems plausible, especially if no commonly used alternatives such as strength training are applicable.


Muscle Stretching Exercises , Humans , Young Adult , Adult , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Range of Motion, Articular , Muscle Strength/physiology
6.
Front Sports Act Living ; 5: 1139065, 2023.
Article En | MEDLINE | ID: mdl-37139297

Purpose: Static stretch training (SST) with long stretching durations seems to be sufficient to increase flexibility, maximum strength (MSt) and muscle thickness (MTh). However, changes in contraction properties and effects on muscle damage remain unclear. Consequently, the objective of the study was to investigate the effects of a 6-week self-performed SST on MSt, MTh, contractile properties, flexibility, and acute response of creatine kinase (CK) 3 days after SST. Methods: Forty-four participants were divided into a control (CG, n = 22) and an intervention group (IG, n = 22), who performed a daily SST for 5 min for the lower limb muscle group. While isometric MSt was measured in leg press, MTh was examined via sonography and flexibility by functional tests. Muscle stiffness and contraction time were measured by tensiomyography on the rectus femoris. Additionally, capillary blood samples were taken in the pretest and in the first 3 days after starting SST to measure CK. Results: A significant increase was found for MSt (p < 0.001, η 2 = 0.195) and flexibility in all functional tests (p < 0.001, η 2 > 0.310). Scheffé post hoc test did not show significant differences between the rectus femoris muscle inter- and intragroup comparisons for MTh nor for muscle stiffness and contraction time (p > 0.05, η 2 < 0.100). Moreover, CK was not significantly different between IG and CG with p > 0.05, η 2 = 0.032. Discussion: In conclusion, the increase in MSt cannot be exclusively explained by muscular hypertrophy or the increased CK-related repair mechanism after acute stretching. Rather, neuronal adaptations have to be considered. Furthermore, daily 5-min SST over 6 weeks does not seem sufficient to change muscle stiffness or contraction time. Increases in flexibility tests could be attributed to a stretch-induced change in the muscle-tendon complex.

7.
Int J Exerc Sci ; 16(4): 83-94, 2023.
Article En | MEDLINE | ID: mdl-37113511

To improve flexibility, stretching is most commonly used and in training interventions duration-dependent effects are hypothesized. However, there are strong limitations in used stretching protocols in most studies, particularly regarding documentation of intensity and performed procedure. Thus, aim of this study was to compare different stretching durations on flexibility in the plantar flexors and to exclude potential biases. Eighty subjects were divided into four groups performing daily stretching training of 10min (IG10), 30min (IG30) and 1h (IG60) and one control group (CG). Flexibility was measured in bended and extended knee joint. Stretching was performed with a calf muscle stretching orthosis to ensure long-lasting stretching training. Data were analysed with a two-way ANOVA for repeated measures on two variables. Two-way ANOVA showed significant effects for time (η2 = 0.557-0.72, p < 0.001) and significant interaction effects for time × group (η2 = 0.39-0.47, p < 0.001). Flexibility in the knee to wall stretch improved with 9.89-14.46% d = 0.97-1.49 and 6.07-16.39% with d = 0.38-1.27 when measured via the goniometer of the orthosis. All stretching times led to significant increases in flexibility in both tests. While there were no significant differences measured via the knee to wall stretch between the groups, the range of motion measurement via the goniometer of the orthosis showed significantly higher improvements in flexibility depending on stretching duration with the highest increase in both tests with 60 minutes of stretch per day.

8.
Eur J Appl Physiol ; 123(8): 1773-1787, 2023 Aug.
Article En | MEDLINE | ID: mdl-37029826

Maximal strength measured via maximal voluntary contraction is known as a key factor in competitive sports performance as well as injury risk reduction and rehabilitation. Maximal strength and hypertrophy are commonly trained by performing resistance training programs. However, literature shows that long-term, long-lasting static stretching interventions can also produce significant improvements in maximal voluntary contraction. The aim of this study is to compare increases in maximal voluntary contraction, muscle thickness and flexibility after 6 weeks of stretch training and conventional hypertrophy training. Sixty-nine (69) active participants (f = 30, m = 39; age 27.4 ± 4.4 years, height 175.8 ± 2.1 cm, and weight 79.5 ± 5.9 kg) were divided into three groups: IG1 stretched the plantar flexors continuously for one hour per day, IG2 performed hypertrophy training for the plantar flexors (5 × 10-12 reps, three days per week), while CG did not undergo any intervention. Maximal voluntary contraction, muscle thickness, pennation angle and flexibility were the dependent variables. The results of a series of two-way ANOVAs show significant interaction effects (p < 0.05) for maximal voluntary contraction (ƞ2 = 0.143-0.32, p < 0.006), muscle thickness (ƞ2 = 0.11-0.14, p < 0.021), pennation angle (ƞ2 = 0.002-0.08, p = 0.077-0.625) and flexibility (ƞ2 = 0.089-0.21, p < 0.046) for both the stretch and hypertrophy training group without significant differences (p = 0.37-0.99, d = 0.03-0.4) between both intervention groups. Thus, it can be hypothesized that mechanical tension plays a crucial role in improving maximal voluntary contraction and muscle thickness irrespective whether long-lasting stretching or hypertrophy training is used. Results show that for the calf muscle, the use of long-lasting stretching interventions can be deemed an alternative to conventional resistance training if the aim is to increase maximal voluntary contraction, muscle thickness and flexibility. However, the practical application seems to be strongly limited as a weekly stretching duration of up to 7 h a week is opposed by 3 × 15 min of common resistance training.


Muscle Stretching Exercises , Humans , Young Adult , Adult , Muscle, Skeletal/physiology , Leg , Hypertrophy , Muscle Strength/physiology
9.
Front Sports Act Living ; 5: 1105201, 2023.
Article En | MEDLINE | ID: mdl-36873661

Measuring maximal strength (MSt) is a very common performance diagnoses, especially in elite and competitive sports. The most popular procedure in test batteries is to test the one repetition maximum (1RM). Since testing maximum dynamic strength is very time consuming, it often suggested to use isometric testing conditions instead. This suggestion is based on the assumption that the high Pearson correlation coefficients of r ≥ 0.7 between isometric and dynamic conditions indicate that both tests would provide similar measures of MSt. However, calculating r provides information about the relationship between two parameters, but does not provide any statement about the agreement or concordance of two testing procedures. Hence, to assess replaceability, the concordance correlation coefficient (ρ c) and the Bland-Altman analysis including the mean absolute error (MAE) and the mean absolute percentage error (MAPE) seem to be more appropriate. Therefore, an exemplary model based on r = 0.55 showed ρ c = 0.53, A MAE of 413.58 N and a MAPE = 23.6% with a range of -1,000-800 N within 95% Confidence interval (95%CI), while r = 0.7 and 0.92 showed ρ c = 0.68 with a MAE = 304.51N/MAPE = 17.4% with a range of -750 N-600 N within a 95% CI and ρ c = 0.9 with a MAE = 139.99/MAPE = 7.1% with a range of -200-450 N within a 95% CI, respectively. This model illustrates the limited validity of correlation coefficients to evaluate the replaceability of two testing procedures. Interpretation and classification of ρ c, MAE and MAPE seem to depend on expected changes of the measured parameter. A MAPE of about 17% between two testing procedures can be assumed to be intolerably high.

10.
Article En | MEDLINE | ID: mdl-36293831

Many sports injuries result in surgery and prolonged periods of immobilization, which may lead to significant atrophy accompanied by loss of maximal strength and range of motion and, therefore, a weak-leg/strong-leg ratio (as an imbalance index ∆ ) lower than 1. Consequently, there are common rehabilitation programs that aim to enhance maximal strength, muscle thickness and flexibility; however, the literature demonstrates existing strength imbalances after weeks of rehabilitation. Since no study has previously been conducted to investigate the effects of long-duration static stretch training to treat muscular imbalances, the present research aims to determine the possibility of counteracting imbalances in maximal strength and range of motion. Thirty-nine athletic participants with significant calf muscle imbalances in maximal strength and range of motion were divided into an intervention group (one-hour daily plantar flexors static stretching of the weaker leg for six weeks) and a control group to evaluate the effects on maximal strength and range of motion with extended and bent knee joint. Results show significant increases in maximal strength (d = 0.84-1.61, p < 0.001-0.005) and range of motion (d = 0.92-1.49, p < 0.001-0.002) following six weeks of static stretching. Group * time effects (p < 0.001-0.004, η² = 0.22-0.55) revealed ∆ changes in the intervention group from 0.87 to 1.03 for maximal strength and from 0.92 to 1.11 in range of motion. The results provide evidence for the use of six weeks of daily, one hour stretching to counteract muscular imbalances. Related research in clinical settings after surgery is suggested.


Muscle Stretching Exercises , Muscle, Skeletal , Humans , Muscle, Skeletal/physiology , Range of Motion, Articular/physiology , Leg/physiology , Knee Joint/physiology , Muscle Strength
11.
Article En | MEDLINE | ID: mdl-36141890

Rebuilding strength capacity is of crucial importance in rehabilitation since significant atrophy due to immobilization after injury and/or surgery can be assumed. To increase maximal strength (MSt), strength training is commonly used. The literature regarding animal studies show that long-lasting static stretching (LStr) interventions can also produce significant improvements in MSt with a dose-response relationship, with stretching times ranging from 30 min to 24 h per day; however, there is limited evidence in human studies. Consequently, the aim of this study is to investigate the dose-response relationship of long-lasting static stretching on MSt. A total of 70 active participants (f = 30, m = 39; age: 27.4 ± 4.4 years; height: 175.8 ± 2.1 cm; and weight: 79.5 ± 5.9 kg) were divided into three groups: IG1 and IG2 both performed unilateral stretching continuously for one (IG1) or two hours (IG2), respectively, per day for six weeks, while the CG served as the non-intervened control. MSt was determined in the plantar flexors in the intervened as well as in the non-intervened control leg to investigate the contralateral force transfer. Two-way ANOVA showed significant interaction effects for MSt in the intervened leg (ƞ2 = 0.325, p < 0.001) and in the contralateral control leg (ƞ2 = 0.123, p = 0.009), dependent upon stretching time. From this, it can be hypothesized that stretching duration had an influence on MSt increases, but both durations were sufficient to induce significant enhancements in MSt. Thus, possible applications in rehabilitation can be assumed, e.g., if no strength training can be performed, atrophy could instead be reduced by performing long-lasting static stretch training.


Muscle Stretching Exercises , Adult , Atrophy , Humans , Leg/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Orthotic Devices , Young Adult
12.
Front Physiol ; 13: 878955, 2022.
Article En | MEDLINE | ID: mdl-35694390

Background: In animal studies long-term stretching interventions up to several hours per day have shown large increases in muscle mass as well as maximal strength. The aim of this study was to investigate the effects of a long-term stretching on maximal strength, muscle cross sectional area (MCSA) and range of motion (ROM) in humans. Methods: 52 subjects were divided into an Intervention group (IG, n = 27) and a control group (CG, n = 25). IG stretched the plantar flexors for one hour per day for six weeks using an orthosis. Stretching was performed on one leg only to investigate the contralateral force transfer. Maximal isometric strength (MIS) and 1RM were both measured in extended knee joint. Furthermore, we investigated the MCSA of IG in the lateral head of the gastrocnemius (LG) using sonography. Additionally, ROM in the upper ankle was investigated via the functional "knee to wall stretch" test (KtW) and a goniometer device on the orthosis. A two-way ANOVA was performed in data analysis, using the Scheffé Test as post-hoc test. Results: There were high time-effects (p = 0.003, ƞ² = 0.090) and high interaction-effect (p < 0.001, ƞ²=0.387) for MIS and also high time-effects (p < 0.001, ƞ²=0.193) and interaction-effects (p < 0.001, ƞ²=0,362) for 1RM testing. Furthermore, we measured a significant increase of 15.2% in MCSA of LG with high time-effect (p < 0.001, ƞ²=0.545) and high interaction-effect (p=0.015, ƞ²=0.406). In ROM we found in both tests significant increases up to 27.3% with moderate time-effect (p < 0.001, ƞ²=0.129) and high interaction-effect (p < 0.001, ƞ²=0.199). Additionally, we measured significant contralateral force transfers in maximal strength tests of 11.4% (p < 0.001) in 1RM test and 1.4% (p=0.462) in MIS test. Overall, there we no significant effects in control situations for any parameter (CG and non-intervened leg of IG). Discussion: We hypothesize stretching-induced muscle damage comparable to effects of mechanical load of strength training, that led to hypertrophy and thus to an increase in maximal strength. Increases in ROM could be attributed to longitudinal hypertrophy effects, e.g., increase in serial sarcomeres. Measured cross-education effects could be explained by central neural adaptations due to stimulation of the stretched muscles.

13.
Prax Kinderpsychol Kinderpsychiatr ; 69(4): 289-304, 2020 Jul.
Article De | MEDLINE | ID: mdl-32615896

School-based Mindfulness Programs for Children and Adolescents Mindfulness is a mental state achieved by focusing one's awareness on the present moment, while calmly acknowledging and accepting one's bodily sensations, sensory feedback, thoughts, and feelings. Mindfulness interventions can improve proprioception, direction of attention, and emotion regulation. An accepting attitude towards thoughts and feelings reduces the experience of stress so that it is easier to cope with stressful situations. The regular practice of mindfulness exercises affects neurobiological mechanisms, which can lead to an improvement of executive functions as well as psychological health. Metaanalyses provide evidence of small effects of mindfulness interventions in schools, both in cognitive areas (executive functions, concentration, memory) and in emotional areas (anxiety, depressivity, wellbeing). The focus of this review article is on German and English-language mindfulness programmes for children and adolescents in schools, which have already been the subject of initial evaluation studies. This study presents the programmes Paws b, Mind Up, and Mehr Ruhe for children, and .b, Mind Up, AISCHU, and 8sam for adolescents, together with their evaluation results. The conclusion discusses open questions concerning conceptual and methodological issues.


Mental Health , Mindfulness , Psychology, Adolescent , Psychology, Child , School Mental Health Services , Adolescent , Anxiety/prevention & control , Anxiety/therapy , Child , Cognition , Depression/prevention & control , Depression/therapy , Emotions , Executive Function , Humans , Schools
14.
BMC Public Health ; 17(1): 696, 2017 09 08.
Article En | MEDLINE | ID: mdl-28886734

BACKGROUND: Worldwide, one third of the adult population is insufficiently physically active. This fact has led to a strong demand for public health initiatives. Given the mixed evidence on the effectiveness of worksite interventions promoting physical activity (PA), a pedometer-based and gamified intervention, Healingo Fit, was developed and evaluated over a period of six weeks. METHODS: The effectiveness of Healingo Fit was evaluated as part of a randomized controlled trial (RCT) with two measurement points involving employees of an automobile manufacturer. Direct health promotion outcomes were assessed using self-developed items on PA knowledge, the HAPA brief scales and the exercise self-efficacy scale. IPAQ short version was used to assess different forms of PA behavior. Intervention effects were identified using a two-way analysis of variance (ANOVA) with repeated measurements. RESULTS: A total of 144 participants took part in the study (intervention group = 80, control group = 64). The results of the ANOVA show significant interaction effects (group x time) for health promotion outcomes (knowledge, intention, and self-efficacy), with medium to high effect sizes. In the health behavior related outcomes, there were significant improvements, with large effect sizes for low levels of PA, but not for moderate and high PA. Walking time increased by 125 min/week in the intervention group, corresponding to a percentage increase of 30% compared to baseline. CONCLUSIONS: Pedometer-based interventions using gamification elements can have positive effects not only on health promotion parameters but can also lead to an increase in PA behavior. The online format of Healingo Fit is suitable for reaching large numbers of people and achieving population effects. TRIAL REGISTRATION: German Clinical Trials Register (DRKS): DRKS00006105 , date of registration: 2017-03-24.


Exercise , Health Promotion/methods , Internet , Occupational Health , Adult , Female , Germany , Humans , Male , Middle Aged , Pilot Projects , Program Evaluation
...