Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
2.
Curr Biol ; 33(16): 3495-3504.e4, 2023 08 21.
Article En | MEDLINE | ID: mdl-37473761

Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%-18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost.


Biodiversity , Forests , Humans , Rainforest , Brazil , Tropical Climate , Conservation of Natural Resources , Ecosystem
3.
Glob Chang Biol ; 29(17): 4861-4879, 2023 09.
Article En | MEDLINE | ID: mdl-37386918

For more than three decades, major efforts in sampling and analyzing tree diversity in South America have focused almost exclusively on trees with stems of at least 10 and 2.5 cm diameter, showing highest species diversity in the wetter western and northern Amazon forests. By contrast, little attention has been paid to patterns and drivers of diversity in the largest canopy and emergent trees, which is surprising given these have dominant ecological functions. Here, we use a machine learning approach to quantify the importance of environmental factors and apply it to generate spatial predictions of the species diversity of all trees (dbh ≥ 10 cm) and for very large trees (dbh ≥ 70 cm) using data from 243 forest plots (108,450 trees and 2832 species) distributed across different forest types and biogeographic regions of the Brazilian Amazon. The diversity of large trees and of all trees was significantly associated with three environmental factors, but in contrasting ways across regions and forest types. Environmental variables associated with disturbances, for example, the lightning flash rate and wind speed, as well as the fraction of photosynthetically active radiation, tend to govern the diversity of large trees. Upland rainforests in the Guiana Shield and Roraima regions had a high diversity of large trees. By contrast, variables associated with resources tend to govern tree diversity in general. Places such as the province of Imeri and the northern portion of the province of Madeira stand out for their high diversity of species in general. Climatic and topographic stability and functional adaptation mechanisms promote ideal conditions for species diversity. Finally, we mapped general patterns of tree species diversity in the Brazilian Amazon, which differ substantially depending on size class.


Acclimatization , Wind , Brazil , Rainforest , Biodiversity
4.
New Phytol ; 237(3): 714-733, 2023 02.
Article En | MEDLINE | ID: mdl-35037253

Tropical forest function is of global significance to climate change responses, and critically determined by water availability patterns. Groundwater is tightly related to soil water through the water table depth (WT), but historically neglected in ecological studies. Shallow WT forests (WT < 5 m) are underrepresented in forest research networks and absent in eddy flux measurements, although they represent c. 50% of the Amazon and are expected to respond differently to global-change-related droughts. We review WT patterns and consequences for plants, emerging results, and advance a conceptual model integrating environment and trait distributions to predict climate change effects. Shallow WT forests have a distinct species composition, with more resource-acquisitive and hydrologically vulnerable trees, shorter canopies and lower biomass than deep WT forests. During 'normal' climatic years, shallow WT forests have higher mortality and lower productivity than deep WT forests, but during moderate droughts mortality is buffered and productivity increases. However, during severe drought, shallow WT forests may be more sensitive due to shallow roots and drought-intolerant traits. Our evidence supports the hypothesis of neglected shallow WT forests being resilient to moderate drought, challenging the prevailing view of widespread negative effects of climate change on Amazonian forests that ignores WT gradients, but predicts they could collapse under very strong droughts.


O funcionamento da floresta tropical é de importância global para as respostas às mudanças climáticas e é criticamente determinado pelos padrões de disponibilidade de água. A água subterrânea está intimamente relacionada à água do solo através da profundidade do lençol freático, que tem sido historicamente negligenciado em estudos ecológicos. Florestas com lençol freático raso (< 5 m) estão sub-representadas nas redes de pesquisa florestal e ausentes nas medições de fluxo de gases, embora representem ~ 50% da Amazônia e devam responder de forma diferente às secas relacionadas às mudanças globais. Aqui revisamos os padrões de profundidade do lençol freático e suas consequências para plantas, resultados emergentes, e avançamos em um modelo conceitual que integra o ambiente e as distribuições de características funcionais para prever os efeitos das mudanças climáticas. As florestas com lençol freático raso têm uma composição de espécies distinta, com árvores mais aquisitivas na obtenção de recursos e hidrologicamente vulneráveis, dosséis mais baixos e menor biomassa do que as florestas com lençol freático profundo. Durante os anos climáticos 'normais', as florestas com lençol freático raso têm maior mortalidade e menor produtividade do que as florestas com lençol freático profundo, mas durante secas moderadas, a mortalidade é amortecida e a produtividade aumenta. No entanto, durante secas severas, as florestas com lençol freático raso podem ser mais sensíveis devido às raízes superficiais e características funcionais de intolerância à seca. Nossas evidências apoiam a hipótese de que as florestas com lençol freático raso, historicamente negligenciadas, sejam resilientes à seca moderada, desafiando a visão predominante dos efeitos negativos generalizados da mudança climática nas florestas amazônicas que ignora gradientes de profundidade do lençol freático, mas prevê que elas podem entrar em colapso sob secas muito fortes.


La función de los bosques tropicales es de importancia mundial para las respuestas al cambio climático y está críticamente determinada por los patrones de disponibilidad de agua. El agua subterránea está estrechamente relacionada con el agua del suelo a través de la profundidad del nivel freático (NF), pero históricamente se há negligenciado en los estudios ecológicos. Los bosques con NF poco profundos (NF < 5 m) están subrepresentados en las redes de investigación forestal y ausentes en las mediciones de flujo de gases, aunque representan ~ 50% de la Amazonía y se espera que respondan de manera diferente a las sequías relacionadas con el cambio climático global. Aquí revisamos los patrones de NF y las consecuencias para las plantas, los resultados emergentes y avanzamos en un modelo conceptual que integra distribuciones ambientales y de rasgos funcionales para predecir los efectos del cambio climático. Los bosques con NF poco profundos tienen una composición de especies distinta, con árboles más adquisitivos en la obtención de recursos e hidrológicamente más vulnerables, dosel más bajo y menor biomasa que los bosques de NF profundo. Durante los años climáticos 'normales', los bosques con NF poco profundos tienen una mayor mortalidad y menor productividad que los bosques con NF profundos, pero durante sequías moderadas la mortalidad se amortigua y la productividad aumenta. Sin embargo, durante una sequía severa, los bosques de NF poco profundos pueden ser más sensibles debido a raíces poco profundas y rasgos de intolerancia a la sequía. Nuestra evidencia apoya la hipótesis de que los bosques de NF poco profundos, mayoritariamente desconsiderados, son resistentes a sequías moderadas, desafiando la visión predominante de impactos negativos generalizados del cambio climático en los bosques amazónicos, que ignora los gradientes de NF, pero predice que podrían colapsar bajo sequías muy fuertes.


Droughts , Groundwater , Refugium , Forests , Trees/physiology , Climate Change , Water , Tropical Climate
5.
Biol Rev Camb Philos Soc ; 98(2): 662-676, 2023 04.
Article En | MEDLINE | ID: mdl-36453621

Naturally regenerating forests or secondary forests (SFs) are a promising strategy for restoring large expanses of tropical forests at low cost and with high environmental benefits. This expectation is supported by the high resilience of tropical forests after natural disturbances, yet this resilience can be severely reduced by human impacts. Assessing the characteristics of SFs and their ecological integrity (EI) is essential to evaluating their role for conservation, restoration, and provisioning of ecosystem services. In this study, we aim to propose a concept and indicators that allow the assessment and classification of the EI of SFs. To this end, we review the literature to assess how EI has been addressed in different ecosystems and which indicators of EI are most commonly used for tropical forests. Building upon this knowledge we propose a modification of the concept of EI to embrace SFs and suggest indicators of EI that can be applied to different successional stages or stand ages. Additionally, we relate these indicators to ecosystem service provision in order to support the practical application of the theory. EI is generally defined as the ability of ecosystems to support and maintain composition, structure and function similar to the reference conditions of an undisturbed ecosystem. This definition does not consider the temporal dynamics of recovering ecosystems, such as SFs. Therefore, we suggest incorporation of an optimal successional trajectory as a reference in addition to the old-growth forest reference. The optimal successional trajectory represents the maximum EI that can be attained at each successional stage in a given region and enables the evaluation of EI at any given age class. We further suggest a list of indicators, the main ones being: compositional indicators (species diversity/richness and indicator species); structural indicators (basal area, heterogeneity of basal area and canopy cover); function indicators (tree growth and mortality); and landscape proxies (landscape heterogeneity, landscape connectivity). Finally, we discuss how this approach can assist in defining the value of SF patches to provide ecosystem services, restore forests and contribute to ecosystem conservation.


Ecosystem , Forests , Humans , Trees , Tropical Climate , Biodiversity
6.
PLoS One ; 16(10): e0257875, 2021.
Article En | MEDLINE | ID: mdl-34597306

Plants have been used in Amazonian forests for millennia and some of these plants are disproportionally abundant (hyperdominant). At local scales, people generally use the most abundant plants, which may be abundant as the result of management of indigenous peoples and local communities. However, it is unknown whether plant use is also associated with abundance at larger scales. We used the population sizes of 4,454 arboreal species (trees and palms) estimated from 1946 forest plots and compiled information about uses from 29 Amazonian ethnobotany books and articles published between 1926 and 2013 to investigate the relationship between species usefulness and their population sizes, and how this relationship is influenced by the degree of domestication of arboreal species across Amazonia. We found that half of the arboreal species (2,253) are useful to humans, which represents 84% of the estimated individuals in Amazonian forests. Useful species have mean populations sizes six times larger than non-useful species, and their abundance is related with the probability of usefulness. Incipiently domesticated species are the most abundant. Population size was weakly related to specific uses, but strongly related with the multiplicity of uses. This study highlights the enormous usefulness of Amazonian arboreal species for local peoples. Our findings support the hypothesis that the most abundant plant species have a greater chance to be useful at both local and larger scales, and suggest that although people use the most abundant plants, indigenous people and local communities have contributed to plant abundance through long-term management.


Biodiversity , Plants , Brazil , Domestication , Ethnobotany , Humans
7.
Nat Ecol Evol ; 5(6): 757-767, 2021 06.
Article En | MEDLINE | ID: mdl-33795854

The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare but a few are common across the region. Indeed, just 227 'hyperdominant' species account for >50% of all individuals >10 cm diameter at 1.3 m in height. Yet, the degree to which the phenomenon of hyperdominance is sensitive to tree size, the extent to which the composition of dominant species changes with size class and how evolutionary history constrains tree hyperdominance, all remain unknown. Here, we use a large floristic dataset to show that, while hyperdominance is a universal phenomenon across forest strata, different species dominate the forest understory, midstory and canopy. We further find that, although species belonging to a range of phylogenetically dispersed lineages have become hyperdominant in small size classes, hyperdominants in large size classes are restricted to a few lineages. Our results demonstrate that it is essential to consider all forest strata to understand regional patterns of dominance and composition in Amazonia. More generally, through the lens of 654 hyperdominant species, we outline a tractable pathway for understanding the functioning of half of Amazonian forests across vertical strata and geographical locations.


Forests , Trees , Biodiversity , Brazil , Humans
8.
Ecol Appl ; 29(6): e01952, 2019 09.
Article En | MEDLINE | ID: mdl-31206818

Assessing the persistent impacts of fragmentation on aboveground structure of tropical forests is essential to understanding the consequences of land use change for carbon storage and other ecosystem functions. We investigated the influence of edge distance and fragment size on canopy structure, aboveground woody biomass (AGB), and AGB turnover in the Biological Dynamics of Forest Fragments Project (BDFFP) in central Amazon, Brazil, after 22+ yr of fragment isolation, by combining canopy variables collected with portable canopy profiling lidar and airborne laser scanning surveys with long-term forest inventories. Forest height decreased by 30% at edges of large fragments (>10 ha) and interiors of small fragments (<3 ha). In larger fragments, canopy height was reduced up to 40 m from edges. Leaf area density profiles differed near edges: the density of understory vegetation was higher and midstory vegetation lower, consistent with canopy reorganization via increased regeneration of pioneers following post-fragmentation mortality of large trees. However, canopy openness and leaf area index remained similar to control plots throughout fragments, while canopy spatial heterogeneity was generally lower at edges. AGB stocks and fluxes were positively related to canopy height and negatively related to spatial heterogeneity. Other forest structure variables typically used to assess the ecological impacts of fragmentation (basal area, density of individuals, and density of pioneer trees) were also related to lidar-derived canopy surface variables. Canopy reorganization through the replacement of edge-sensitive species by disturbance-tolerant ones may have mitigated the biomass loss effects due to fragmentation observed in the earlier years of BDFFP. Lidar technology offered novel insights and observational scales for analysis of the ecological impacts of fragmentation on forest structure and function, specifically aboveground biomass storage.


Ecosystem , Rainforest , Brazil , Forests , Trees , Tropical Climate
9.
PLoS One ; 14(2): e0212232, 2019.
Article En | MEDLINE | ID: mdl-30768631

Habitat heterogeneity of tropical forests is thought to lead to specialization in plants and contribute to the high diversity of tree species in Amazonia. One prediction of habitat specialization is that species specialized for resource-rich habitats will have traits associated with high resource acquisition and fast growth while species specialized for resource-poor habitats will have traits associated with high resource conservation and persistence but slow growth. We tested this idea for seven genera and for twelve families from nutrient-rich white-water floodplain forest (várzea) and nutrient-poor black-water (igapó) floodplain forest. We measured 11 traits that are important for the carbon and nutrient balance of the trees, and compared trait variation between habitat types (white- and black-water forests), and the effect of habitat and genus/family on trait divergence. Functional traits of congeneric species differed between habitat types, where white-water forest species invested in resource acquisition and productive tissues, whereas black-water forest species invested in resource conservation and persistent tissues. Habitat specialization is leading to the differentiation of floodplain tree species of white-water and black-water forests, thus contributing to a high diversity of plant species in floodplain forests.


Biodiversity , Forests , Models, Biological , Trees/physiology , Tropical Climate
10.
New Phytol ; 221(3): 1457-1465, 2019 02.
Article En | MEDLINE | ID: mdl-30295938

Species distribution is strongly driven by local and global gradients in water availability but the underlying mechanisms are not clear. Vulnerability to xylem embolism (P50 ) is a key trait that indicates how species cope with drought and might explain plant distribution patterns across environmental gradients. Here we address its role on species sorting along a hydro-topographical gradient in a central Amazonian rainforest and examine its variance at the community scale. We measured P50 for 28 tree species, soil properties and estimated the hydrological niche of each species using an indicator of distance to the water table (HAND). We found a large hydraulic diversity, covering as much as 44% of the global angiosperm variation in P50 . We show that P50 : contributes to species segregation across a hydro-topographic gradient in the Amazon, and thus to species coexistence; is the result of repeated evolutionary adaptation within closely related taxa; is associated with species tolerance to P-poor soils, suggesting the evolution of a stress-tolerance syndrome to nutrients and drought; and is higher for trees in the valleys than uplands. The large observed hydraulic diversity and its association with topography has important implications for modelling and predicting forest and species resilience to climate change.


Rainforest , Trees/physiology , Water , Xylem/physiology , Phylogeny , Species Specificity
11.
New Phytol ; 219(1): 109-121, 2018 07.
Article En | MEDLINE | ID: mdl-29774944

The functional trait approach has, as a central tenet, that plant traits are functional and shape individual performance, but this has rarely been tested in the field. Here, we tested the individual-based trait approach in a hyperdiverse Amazonian tropical rainforest and evaluated intraspecific variation in trait values, plant strategies at the individual level, and whether traits are functional and predict individual performance. We evaluated > 1300 tree saplings belonging to > 383 species, measured 25 traits related to growth and defense, and evaluated the effects of environmental conditions, plant size, and traits on stem growth. A total of 44% of the trait variation was observed within species, indicating a strong potential for acclimation. Individuals showed two strategy spectra, related to tissue toughness and organ size vs leaf display. In this nutrient- and light-limited forest, traits measured at the individual level were surprisingly poor predictors of individual growth performance because of convergence of traits and growth rates. Functional trait approaches based on individuals or species are conceptually fundamentally different: the species-based approach focuses on the potential and the individual-based approach on the realized traits and growth rates. Counterintuitively, the individual approach leads to a poor prediction of individual performance, although it provides a more realistic view on community dynamics.


Trees/anatomy & histology , Trees/growth & development , Environment , Phenotype , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Rainforest , Seedlings/anatomy & histology , Seedlings/growth & development
12.
Front Plant Sci ; 9: 203, 2018.
Article En | MEDLINE | ID: mdl-29593750

Domestication studies traditionally focus on the differences in morphological characteristics between wild and domesticated populations that are under direct selection, the components of the domestication syndrome. Here, we consider that other aspects can be modified, because of the interdependence between plant characteristics and the forces of natural selection. We investigated the ongoing domestication of Pourouma cecropiifolia populations cultivated by the Ticuna people in Western Amazonia, using traditional and ecological approaches. We compared fruit characteristics between wild and domesticated populations to quantify the direct effects of domestication. To examine the characteristics that are not under direct selection and the correlated effects of human selection and natural selection, we investigated the differences in vegetative characteristics, changes in seed:fruit allometric relations and the relations of these characteristics with variation in environmental conditions summarized in a principal component analysis. Domestication generated great changes in fruit characteristics, as expected in fruit crops. The fruits of domesticated plants had 20× greater mass and twice as much edible pulp as wild fruits. The plant height:DBH ratio and wood density were, respectively, 42% and 22% smaller in domesticated populations, probably in response to greater luminosity and higher sand content of the cultivated landscapes. Seed:fruit allometry was modified by domestication: although domesticated plants have heavier seeds, the domesticated fruits have proportionally (46%) smaller seed mass compared to wild fruits. The high light availability and poor soils of cultivated landscapes may have contributed to seed mass reduction, while human selection promoted seed mass increase in correlation with fruit mass increase. These contrasting effects generated a proportionately smaller increase in seed mass in domesticated plants. In this study, it was not possible to clearly dissociate the environmental effects from the domestication effects in changes in morphological characteristics, because the environmental conditions were intensively modified by human management, showing that plant domestication is intrinsically related to landscape domestication. Our results suggest that evaluation of environmental conditions together with human selection on domesticated phenotypes provide a better understanding of the changes generated by domestication in plants.

13.
New Phytol ; 215(1): 113-125, 2017 Jul.
Article En | MEDLINE | ID: mdl-28369998

Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest. We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity (WSG)), organ (leaf area, specific leaf area (SLA), leaf area : sapwood area ratio) and whole-plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra-firme forest in Central Amazonia. On plateaus, species had higher WSG, but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area : sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood. In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios.


Trees/physiology , Water/metabolism , Brazil , Ecosystem , Population Dynamics , Principal Component Analysis , Species Specificity , Trees/anatomy & histology , Trees/metabolism , Xylem/anatomy & histology , Xylem/metabolism , Xylem/physiology
14.
Proc Natl Acad Sci U S A ; 113(4): 892-7, 2016 Jan 26.
Article En | MEDLINE | ID: mdl-26811455

Tropical forests are the global cornerstone of biological diversity, and store 55% of the forest carbon stock globally, yet sustained provisioning of these forest ecosystem services may be threatened by hunting-induced extinctions of plant-animal mutualisms that maintain long-term forest dynamics. Large-bodied Atelinae primates and tapirs in particular offer nonredundant seed-dispersal services for many large-seeded Neotropical tree species, which on average have higher wood density than smaller-seeded and wind-dispersed trees. We used field data and models to project the spatial impact of hunting on large primates by ∼ 1 million rural households throughout the Brazilian Amazon. We then used a unique baseline dataset on 2,345 1-ha tree plots arrayed across the Brazilian Amazon to model changes in aboveground forest biomass under different scenarios of hunting-induced large-bodied frugivore extirpation. We project that defaunation of the most harvest-sensitive species will lead to losses in aboveground biomass of between 2.5-5.8% on average, with some losses as high as 26.5-37.8%. These findings highlight an urgent need to manage the sustainability of game hunting in both protected and unprotected tropical forests, and place full biodiversity integrity, including populations of large frugivorous vertebrates, firmly in the agenda of reducing emissions from deforestation and forest degradation (REDD+) programs.


Biomass , Ecosystem , Forests , Human Activities , Seed Dispersal , Animal Distribution , Animals , Biodiversity , Brazil , Carbon Cycle , Carnivory , Conservation of Natural Resources , Endangered Species , Fruit , Herbivory , Humans , Plant Dispersal , Platyrrhini , Predatory Behavior , Trees/growth & development
15.
PLoS One ; 10(7): e0132144, 2015.
Article En | MEDLINE | ID: mdl-26168242

Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8%) as compared to Ducke Reserve (2.0%). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10% of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6% at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13% and 10%, respectively). At Tapajos, height loss had a much stronger signal (23% versus 6%) within gaps. Both sites demonstrate limited gap contagiousness defined by an increase in the likelihood of mortality in the immediate vicinity (~6 m) of existing gaps.


Rainforest , Brazil , Demography , Ecosystem , Population Dynamics , Trees
16.
Ecol Lett ; 18(7): 636-45, 2015 Jul.
Article En | MEDLINE | ID: mdl-25963522

Forest biophysical structure - the arrangement and frequency of leaves and stems - emerges from growth, mortality and space filling dynamics, and may also influence those dynamics by structuring light environments. To investigate this interaction, we developed models that could use LiDAR remote sensing to link leaf area profiles with tree size distributions, comparing models which did not (metabolic scaling theory) and did allow light to influence this link. We found that a light environment-to-structure link was necessary to accurately simulate tree size distributions and canopy structure in two contrasting Amazon forests. Partitioning leaf area profiles into size-class components, we found that demographic rates were related to variation in light absorption, with mortality increasing relative to growth in higher light, consistent with a light environment feedback to size distributions. Combining LiDAR with models linking forest structure and demography offers a high-throughput approach to advance theory and investigate climate-relevant tropical forest change.


Forests , Light , Plant Leaves/growth & development , Trees/growth & development , Brazil , Models, Biological , Satellite Imagery , Tropical Climate
17.
Science ; 342(6156): 1243092, 2013 Oct 18.
Article En | MEDLINE | ID: mdl-24136971

The vast extent of the Amazon Basin has historically restricted the study of its tree communities to the local and regional scales. Here, we provide empirical data on the commonness, rarity, and richness of lowland tree species across the entire Amazon Basin and Guiana Shield (Amazonia), collected in 1170 tree plots in all major forest types. Extrapolations suggest that Amazonia harbors roughly 16,000 tree species, of which just 227 (1.4%) account for half of all trees. Most of these are habitat specialists and only dominant in one or two regions of the basin. We discuss some implications of the finding that a small group of species--less diverse than the North American tree flora--accounts for half of the world's most diverse tree community.


Biodiversity , Rivers , Trees/classification , Trees/physiology , Models, Biological , Population , South America
18.
PLoS One ; 7(11): e48559, 2012.
Article En | MEDLINE | ID: mdl-23185264

BACKGROUND: Native Amazonian populations managed forest resources in numerous ways, often creating oligarchic forests dominated by useful trees. The scale and spatial distribution of forest modification beyond pre-Columbian settlements is still unknown, although recent studies propose that human impact away from rivers was minimal. We tested the hypothesis that past human management of the useful tree community decreases with distance from rivers. METHODOLOGY/PRINCIPAL FINDINGS: In six sites, we inventoried trees and palms with DBH≥10 cm and collected soil for charcoal analysis; we also mapped archaeological evidence around the sites. To quantify forest manipulation, we measured the relative abundance, richness and basal area of useful trees and palms. We found a strong negative exponential relationship between forest manipulation and distance to large rivers. Plots located from 10 to 20 km from a main river had 20-40% useful arboreal species, plots between 20 and 40 km had 12-23%, plots more than 40 km had less than 15%. Soil charcoal abundance was high in the two sites closest to secondary rivers, suggesting past agricultural practices. The shortest distance between archaeological evidence and plots was found in sites near rivers. CONCLUSIONS/SIGNIFICANCE: These results strongly suggest that past forest manipulation was not limited to the pre-Columbian settlements along major rivers, but extended over interfluvial areas considered to be primary forest today. The sustainable use of Amazonian forests will be most effective if it considers the degree of past landscape domestication, as human-modified landscapes concentrate useful plants for human sustainable use and management today.


Human Activities , Rivers , Trees/physiology , Brazil , Charcoal , Geography , Humans , Regression Analysis , Soil
19.
Ecol Lett ; 15(12): 1406-14, 2012 Dec.
Article En | MEDLINE | ID: mdl-22994288

Tropical forest structural variation across heterogeneous landscapes may control above-ground carbon dynamics. We tested the hypothesis that canopy structure (leaf area and light availability) - remotely estimated from LiDAR - control variation in above-ground coarse wood production (biomass growth). Using a statistical model, these factors predicted biomass growth across tree size classes in forest near Manaus, Brazil. The same statistical model, with no parameterisation change but driven by different observed canopy structure, predicted the higher productivity of a site 500 km east. Gap fraction and a metric of vegetation vertical extent and evenness also predicted biomass gains and losses for one-hectare plots. Despite significant site differences in canopy structure and carbon dynamics, the relation between biomass growth and light fell on a unifying curve. This supported our hypothesis, suggesting that knowledge of canopy structure can explain variation in biomass growth over tropical landscapes and improve understanding of ecosystem function.


Carbon/metabolism , Light , Models, Biological , Plant Leaves/metabolism , Trees/metabolism , Environment
...