Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 121
1.
Nat Rev Dis Primers ; 10(1): 35, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755194

Hydrocephalus is classically considered as a failure of cerebrospinal fluid (CSF) homeostasis that results in the active expansion of the cerebral ventricles. Infants with hydrocephalus can present with progressive increases in head circumference whereas older children often present with signs and symptoms of elevated intracranial pressure. Congenital hydrocephalus is present at or near birth and some cases have been linked to gene mutations that disrupt brain morphogenesis and alter the biomechanics of the CSF-brain interface. Acquired hydrocephalus can develop at any time after birth, is often caused by central nervous system infection or haemorrhage and has been associated with blockage of CSF pathways and inflammation-dependent dysregulation of CSF secretion and clearance. Treatments for hydrocephalus mainly include surgical CSF shunting or endoscopic third ventriculostomy with or without choroid plexus cauterization. In utero treatment of fetal hydrocephalus is possible via surgical closure of associated neural tube defects. Long-term outcomes for children with hydrocephalus vary widely and depend on intrinsic (genetic) and extrinsic factors. Advances in genomics, brain imaging and other technologies are beginning to refine the definition of hydrocephalus, increase precision of prognostication and identify nonsurgical treatment strategies.


Hydrocephalus , Humans , Hydrocephalus/physiopathology , Hydrocephalus/diagnosis , Hydrocephalus/therapy , Hydrocephalus/etiology , Hydrocephalus/complications , Child , Infant , Ventriculostomy/methods , Cerebrospinal Fluid Shunts/methods , Infant, Newborn
2.
Fluids Barriers CNS ; 21(1): 24, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38439105

Hydrocephalus (HC) is a heterogenous disease characterized by alterations in cerebrospinal fluid (CSF) dynamics that may cause increased intracranial pressure. HC is a component of a wide array of genetic syndromes as well as a secondary consequence of brain injury (intraventricular hemorrhage (IVH), infection, etc.) that can present across the age spectrum, highlighting the phenotypic heterogeneity of the disease. Surgical treatments include ventricular shunting and endoscopic third ventriculostomy with or without choroid plexus cauterization, both of which are prone to failure, and no effective pharmacologic treatments for HC have been developed. Thus, there is an urgent need to understand the genetic architecture and molecular pathogenesis of HC. Without this knowledge, the development of preventive, diagnostic, and therapeutic measures is impeded. However, the genetics of HC is extraordinarily complex, based on studies of varying size, scope, and rigor. This review serves to provide a comprehensive overview of genes, pathways, mechanisms, and global impact of genetics contributing to all etiologies of HC in humans.


Hydrocephalus , Intracranial Hypertension , Humans , Hydrocephalus/genetics , Cerebral Hemorrhage , Choroid Plexus , Hydrodynamics
3.
medRxiv ; 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37790370

Neonatal infections due to Paenibacillus species have increasingly been reported over the last few years. We performed a structured literature review of human Paenibacillus infections in infants and adults to compare the epidemiology of infections between these distinct patient populations. Thirty-nine reports describing 176 infections met our inclusion criteria and were included. There were 37 Paenibacillus infections occurring in adults caused by 23 species. The clinical presentations of infections were quite variable. In contrast, infections in infants were caused by only 3 species: P. thiaminolyticus (112/139, 80%), P. alvei (2/139, 1%) and P. dendritiformis (2/139, 1%). All of the infants with Paenibacillus infection presented with a sepsis syndrome or meningitis, often complicated by extensive cerebral destruction and hydrocephalus. Outcomes were commonly poor with 17% (24/139) mortality. Cystic encephalomalacia due to brain destruction was common in both Ugandan and American cases and 92/139 (66%) required surgical management of hydrocephalus following their infection. Paenibacillus infections are likely underappreciated in infants and effective treatments are urgently needed.

4.
Stroke ; 54(11): 2832-2841, 2023 11.
Article En | MEDLINE | ID: mdl-37795593

BACKGROUND: Neuroimaging is essential for detecting spontaneous, nontraumatic intracerebral hemorrhage (ICH). Recent data suggest ICH can be characterized using low-field magnetic resonance imaging (MRI). Our primary objective was to investigate the sensitivity and specificity of ICH on a 0.064T portable MRI (pMRI) scanner using a methodology that provided clinical information to inform rater interpretations. As a secondary aim, we investigated whether the incorporation of a deep learning (DL) reconstruction algorithm affected ICH detection. METHODS: The pMRI device was deployed at Yale New Haven Hospital to examine patients presenting with stroke symptoms from October 26, 2020 to February 21, 2022. Three raters independently evaluated pMRI examinations. Raters were provided the images alongside the patient's clinical information to simulate real-world context of use. Ground truth was the closest conventional computed tomography or 1.5/3T MRI. Sensitivity and specificity results were grouped by DL and non-DL software to investigate the effects of software advances. RESULTS: A total of 189 exams (38 ICH, 89 acute ischemic stroke, 8 subarachnoid hemorrhage, 3 primary intraventricular hemorrhage, 51 no intracranial abnormality) were evaluated. Exams were correctly classified as positive or negative for ICH in 185 of 189 cases (97.9% overall accuracy). ICH was correctly detected in 35 of 38 cases (92.1% sensitivity). Ischemic stroke and no intracranial abnormality cases were correctly identified as blood-negative in 139 of 140 cases (99.3% specificity). Non-DL scans had a sensitivity and specificity for ICH of 77.8% and 97.1%, respectively. DL scans had a sensitivity and specificity for ICH of 96.6% and 99.3%, respectively. CONCLUSIONS: These results demonstrate improvements in ICH detection accuracy on pMRI that may be attributed to the integration of clinical information in rater review and the incorporation of a DL-based algorithm. The use of pMRI holds promise in providing diagnostic neuroimaging for patients with ICH.


Ischemic Stroke , Stroke , Humans , Ischemic Stroke/complications , Tomography, X-Ray Computed , Cerebral Hemorrhage/complications , Stroke/diagnosis , Magnetic Resonance Imaging
5.
Nat Rev Bioeng ; 1(9): 617-630, 2023 Sep.
Article En | MEDLINE | ID: mdl-37705717

The advent of portable, low-field MRI (LF-MRI) heralds new opportunities in neuroimaging. Low power requirements and transportability have enabled scanning outside the controlled environment of a conventional MRI suite, enhancing access to neuroimaging for indications that are not well suited to existing technologies. Maximizing the information extracted from the reduced signal-to-noise ratio of LF-MRI is crucial to developing clinically useful diagnostic images. Progress in electromagnetic noise cancellation and machine learning reconstruction algorithms from sparse k-space data as well as new approaches to image enhancement have now enabled these advancements. Coupling technological innovation with bedside imaging creates new prospects in visualizing the healthy brain and detecting acute and chronic pathological changes. Ongoing development of hardware, improvements in pulse sequences and image reconstruction, and validation of clinical utility will continue to accelerate this field. As further innovation occurs, portable LF-MRI will facilitate the democratization of MRI and create new applications not previously feasible with conventional systems.

6.
Bioinformatics ; 39(9)2023 09 02.
Article En | MEDLINE | ID: mdl-37707523

MOTIVATION: In recent years, significant strides have been made in the field of genomics, with the commencement of large-scale studies aimed at collecting host mutational profiles and microbiome data. The amalgamation of host gene mutational profiles in both healthy and diseased subjects with microbial abundance data holds immense promise in providing insights into several crucial research questions, including the development and progression of diseases, as well as individual responses to therapeutic interventions. With the advent of sequencing methods such as 16s ribosomal RNA (rRNA) sequencing and whole genome sequencing, there is increasing evidence of interplay of human genetics and microbial communities. Quantitative trait loci associated with microbial abundance (mbQTLs), are genetic variants that influence the abundance of microbial populations within the host. RESULTS: Here, we introduce mbQTL, the first R package integrating 16S ribosomal RNA (rRNA) sequencing and single-nucleotide variation (SNV) and single-nucleotide polymorphism (SNP) data. We describe various statistical methods implemented for the identification of microbe-SNV pairs, relevant statistical measures, and plot functionality for interpretation. AVAILABILITY AND IMPLEMENTATION: mbQTL is available on bioconductor at https://bioconductor.org/packages/mbQTL/.


Microbiota , Quantitative Trait Loci , Humans , RNA, Ribosomal, 16S/genetics , Genomics , Mutation , Nucleotides
7.
Clin Infect Dis ; 77(5): 768-775, 2023 09 11.
Article En | MEDLINE | ID: mdl-37279589

BACKGROUND: Paenibacillus thiaminolyticus may be an underdiagnosed cause of neonatal sepsis. METHODS: We prospectively enrolled a cohort of 800 full-term neonates presenting with a clinical diagnosis of sepsis at 2 Ugandan hospitals. Quantitative polymerase chain reaction specific to P. thiaminolyticus and to the Paenibacillus genus were performed on the blood and cerebrospinal fluid (CSF) of 631 neonates who had both specimen types available. Neonates with Paenibacillus genus or species detected in either specimen type were considered to potentially have paenibacilliosis, (37/631, 6%). We described antenatal, perinatal, and neonatal characteristics, presenting signs, and 12-month developmental outcomes for neonates with paenibacilliosis versus clinical sepsis due to other causes. RESULTS: Median age at presentation was 3 days (interquartile range 1, 7). Fever (92%), irritability (84%), and clinical signs of seizures (51%) were common. Eleven (30%) had an adverse outcome: 5 (14%) neonates died during the first year of life; 5 of 32 (16%) survivors developed postinfectious hydrocephalus (PIH) and 1 (3%) additional survivor had neurodevelopmental impairment without hydrocephalus. CONCLUSIONS: Paenibacillus species was identified in 6% of neonates with signs of sepsis who presented to 2 Ugandan referral hospitals; 70% were P. thiaminolyticus. Improved diagnostics for neonatal sepsis are urgently needed. Optimal antibiotic treatment for this infection is unknown but ampicillin and vancomycin will be ineffective in many cases. These results highlight the need to consider local pathogen prevalence and the possibility of unusual pathogens when determining antibiotic choice for neonatal sepsis.


Hydrocephalus , Neonatal Sepsis , Paenibacillus , Sepsis , Infant, Newborn , Humans , Female , Pregnancy , Uganda/epidemiology , Sepsis/complications , Sepsis/epidemiology , Sepsis/drug therapy , Anti-Bacterial Agents/therapeutic use , Disease Progression
8.
Lancet Microbe ; 4(8): e601-e611, 2023 08.
Article En | MEDLINE | ID: mdl-37348522

BACKGROUND: Paenibacillus thiaminolyticus is a cause of postinfectious hydrocephalus among Ugandan infants. To determine whether Paenibacillus spp is a pathogen in neonatal sepsis, meningitis, and postinfectious hydrocephalus, we aimed to complete three separate studies of Ugandan infants. The first study was on peripartum prevalence of Paenibacillus in mother-newborn pairs. The second study assessed Paenibacillus in blood and cerebrospinal fluid (CSF) from neonates with sepsis. The third study assessed Paenibacillus in CSF from infants with hydrocephalus. METHODS: In this observational study, we recruited mother-newborn pairs with and without maternal fever (mother-newborn cohort), neonates (aged ≤28 days) with sepsis (sepsis cohort), and infants (aged ≤90 days) with hydrocephalus with and without a history of neonatal sepsis and meningitis (hydrocephalus cohort) from three hospitals in Uganda between Jan 13, 2016 and Oct 2, 2019. We collected maternal blood, vaginal swabs, and placental samples and the cord from the mother-newborn pairs, and blood and CSF from neonates and infants. Bacterial content of infant CSF was characterised by 16S rDNA sequencing. We analysed all samples using quantitative PCR (qPCR) targeting either the Paenibacillus genus or Paenibacillus thiaminolyticus spp. We collected cranial ultrasound and computed tomography images in the subset of participants represented in more than one cohort. FINDINGS: No Paenibacillus spp were detected in vaginal, maternal blood, placental, or cord blood specimens from the mother-newborn cohort by qPCR. Paenibacillus spp was detected in 6% (37 of 631 neonates) in the sepsis cohort and, of these, 14% (5 of 37 neonates) developed postinfectious hydrocephalus. Paenibacillus was the most enriched bacterial genera in postinfectious hydrocephalus CSF (91 [44%] of 209 patients) from the hydrocephalus cohort, with 16S showing 94% accuracy when validated by qPCR. Imaging showed progression from Paenibacillus spp-related meningitis to postinfectious hydrocephalus over 1-3 months. Patients with postinfectious hydrocephalus with Paenibacillus spp infections were geographically clustered. INTERPRETATION: Paenibacillus spp causes neonatal sepsis and meningitis in Uganda and is the dominant cause of subsequent postinfectious hydrocephalus. There was no evidence of transplacental transmission, and geographical evidence was consistent with an environmental source of neonatal infection. Further work is needed to identify routes of infection and optimise treatment of neonatal Paenibacillus spp infection to lessen the burden of morbidity and mortality. FUNDING: National Institutes of Health and Boston Children's Hospital Office of Faculty Development.


Hydrocephalus , Meningitis , Neonatal Sepsis , Paenibacillus , Sepsis , United States , Infant, Newborn , Child , Humans , Infant , Female , Pregnancy , Uganda/epidemiology , Neonatal Sepsis/complications , Placenta , Paenibacillus/genetics , Sepsis/complications , Sepsis/microbiology , Meningitis/complications , Hydrocephalus/epidemiology , Hydrocephalus/etiology , Case-Control Studies
9.
J Neurosurg ; 139(6): 1664-1670, 2023 12 01.
Article En | MEDLINE | ID: mdl-37347618

OBJECTIVE: Low-field portable MRI (pMRI) is a recent technological advancement with potential for broad applications. Compared with conventional MRI, pMRI is less resource-intensive with regard to operational costs and scan time. The application of pMRI in neurosurgical oncology has not been previously described. The goal of this study was to demonstrate the efficacy of pMRI in assessing optic nerve decompression after endoscopic endonasal surgery for sellar and suprasellar pathologies. METHODS: Patients who underwent endoscopic endonasal surgery for sellar and suprasellar lesions at a single institution and for whom pMRI and routine MRI were performed postoperatively were retrospectively reviewed to compare the two imaging systems. To assess the relative resolution of pMRI compared with MRI, the distance from the optic chiasm to the top of the third ventricle was measured, and the measurements were compared between paired equivalent slices on T2-weighted coronal images. The inter- and intrarater correlations were analyzed. RESULTS: Twelve patients were included in this study (10 with pituitary adenomas and 2 with craniopharyngiomas) with varying degrees of optic chiasm compression on preoperative imaging. Measurements were averaged across raters before calculating agreement between pMRI and MRI, which demonstrated significant interrater reliability (intraclass correlation coefficient [ICC] = 0.78, p < 0.01). Agreement between raters within the pMRI measurements was also significantly reliable (ICC = 0.93, p < 0.01). Finally, a linear mixed-effects model was specified to demonstrate that MRI measurement could be predicted using the pMRI measurement with the patient and rater set as random effects (pMRI ß coefficient = 0.80, p < 0.01). CONCLUSIONS: The results of this study suggest that resolution of pMRI is comparable to that of conventional MRI in assessing the optic chiasm position in relation to the third ventricle. Portable MRI sufficiently demonstrates decompression of the optic chiasm after endoscopic endonasal surgery. It can be an alternative strategy in cases in which cost, scan-time considerations, or lack of intraoperative MRI availability may preclude the ability to assess adequate optic nerve decompression after endoscopic endonasal surgery for sellar and suprasellar lesions.


Optic Chiasm , Pituitary Neoplasms , Humans , Optic Chiasm/diagnostic imaging , Optic Chiasm/surgery , Optic Chiasm/pathology , Retrospective Studies , Reproducibility of Results , Pituitary Neoplasms/diagnostic imaging , Pituitary Neoplasms/surgery , Pituitary Neoplasms/pathology , Magnetic Resonance Imaging , Decompression
10.
J Neural Eng ; 20(3)2023 06 16.
Article En | MEDLINE | ID: mdl-37253355

Objective. Hydrocephalus is the leading indication for pediatric neurosurgical care worldwide. Identification of postinfectious hydrocephalus (PIH) verses non-postinfectious hydrocephalus, as well as the pathogen involved in PIH is crucial for developing an appropriate treatment plan. Accurate identification requires clinical diagnosis by neuroscientists and microbiological analysis, which are time-consuming and expensive. In this study, we develop a domain enriched AI method for computerized tomography (CT)-based infection diagnosis in hydrocephalic imagery. State-of-the-art (SOTA) convolutional neural network (CNN) approaches form an attractive neural engineering solution for addressing this problem as pathogen-specific features need discovery. Yet black-box deep networks often need unrealistic abundant training data and are not easily interpreted.Approach. In this paper, a novel brain attention regularizer is proposed, which encourages the CNN to put more focus inside brain regions in its feature extraction and decision making. Our approach is then extended to a hybrid 2D/3D network that mines inter-slice information. A new strategy of regularization is also designed for enabling collaboration between 2D and 3D branches.Main results. Our proposed method achieves SOTA results on a CURE Children's Hospital of Uganda dataset with an accuracy of 95.8% in hydrocephalus classification and 84% in pathogen classification. Statistical analysis is performed to demonstrate that our proposed methods obtain significant improvements over the existing SOTA alternatives.Significance. Such attention regularized learning has particularly pronounced benefits in regimes where training data may be limited, thereby enhancing generalizability. To the best of our knowledge, our findings are unique among early efforts in interpretable AI-based models for classification of hydrocephalus and underlying pathogen using CT scans.


Deep Learning , Hydrocephalus , Child , Humans , Tomography, X-Ray Computed/methods , Neural Networks, Computer , Hydrocephalus/diagnostic imaging , Attention
11.
J Am Heart Assoc ; 12(11): e029242, 2023 06 06.
Article En | MEDLINE | ID: mdl-37218590

Background White matter hyperintensity (WMH) on magnetic resonance imaging (MRI) of the brain is associated with vascular cognitive impairment, cardiovascular disease, and stroke. We hypothesized that portable magnetic resonance imaging (pMRI) could successfully identify WMHs and facilitate doing so in an unconventional setting. Methods and Results In a retrospective cohort of patients with both a conventional 1.5 Tesla MRI and pMRI, we report Cohen's kappa (κ) to measure agreement for detection of moderate to severe WMH (Fazekas ≥2). In a subsequent prospective observational study, we enrolled adult patients with a vascular risk factor being evaluated in the emergency department for a nonstroke complaint and measured WMH using pMRI. In the retrospective cohort, we included 33 patients, identifying 16 (49.5%) with WMH on conventional MRI. Between 2 raters evaluating pMRI, the interrater agreement on WMH was strong (κ=0.81), and between 1 rater for conventional MRI and the 2 raters for pMRI, intermodality agreement was moderate (κ=0.66, 0.60). In the prospective cohort we enrolled 91 individuals (mean age, 62.6 years; 53.9% men; 73.6% with hypertension), of which 58.2% had WMHs on pMRI. Among 37 Black and Hispanic individuals, the Area Deprivation Index was higher (versus White, 51.8±12.9 versus 37.9±11.9; P<0.001). Among 81 individuals who did not have a standard-of-care MRI in the preceding year, we identified WMHs in 43 of 81 (53.1%). Conclusions Portable, low-field imaging could be useful for identifying moderate to severe WMHs. These preliminary results introduce a novel role for pMRI outside of acute care and the potential role for pMRI to reduce disparities in neuroimaging.


White Matter , Male , Adult , Humans , Middle Aged , Female , White Matter/diagnostic imaging , White Matter/pathology , Prospective Studies , Retrospective Studies , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging
12.
NMR Biomed ; 36(7): e4917, 2023 07.
Article En | MEDLINE | ID: mdl-36914258

PURPOSE: To describe the construction and testing of a portable point-of-care low-field MRI system on site in Africa. METHODS: All of the components to assemble a 50 mT Halbach magnet-based system, together with the necessary tools, were air-freighted from the Netherlands to Uganda. The construction steps included individual magnet sorting, filling of each ring of the magnet assembly, fine-tuning the inter-ring separations of the 23-ring magnet assembly, gradient coil construction, integration of gradient coils and magnet assembly, construction of the portable aluminum trolley and finally testing of the entire system with an open source MR spectrometer. RESULTS: With four instructors and six untrained personnel, the complete project from delivery to first image took approximately 11 days. CONCLUSIONS: An important step in translating scientific developments in the western world from high-income industrialized countries to low- and middle-income countries (LMICs) is to produce technology that can be assembled and ultimately constructed locally. Local assembly and construction are associated with skill development, low costs and jobs. Point-of-care systems have a large potential to increase the accessibility and sustainability of MRI in LMICs, and this work demonstrates that technology and knowledge transfer can be performed relatively seamlessly.


Magnetic Resonance Imaging , Point-of-Care Systems , Equipment Design , Africa , Magnets
13.
medRxiv ; 2023 Oct 23.
Article En | MEDLINE | ID: mdl-36993470

Predicting the interplay between infectious disease and behavior has been an intractable problem because behavioral response is so varied. We introduce a general framework for feedback between incidence and behavior for an infectious disease. By identifying stable equilibria, we provide policy end-states that are self-managing and self-maintaining. We prove mathematically the existence of two new endemic equilibria depending on the vaccination rate: one in the presence of low vaccination but with reduced societal activity (the "new normal"), and one with return to normal activity but with vaccination rate below that required for disease elimination. This framework allows us to anticipate the long-term consequence of an emerging disease and design a vaccination response that optimizes public health and limits societal consequences.

14.
Cell ; 186(4): 764-785.e21, 2023 02 16.
Article En | MEDLINE | ID: mdl-36803604

The choroid plexus (ChP) is the blood-cerebrospinal fluid (CSF) barrier and the primary source of CSF. Acquired hydrocephalus, caused by brain infection or hemorrhage, lacks drug treatments due to obscure pathobiology. Our integrated, multi-omic investigation of post-infectious hydrocephalus (PIH) and post-hemorrhagic hydrocephalus (PHH) models revealed that lipopolysaccharide and blood breakdown products trigger highly similar TLR4-dependent immune responses at the ChP-CSF interface. The resulting CSF "cytokine storm", elicited from peripherally derived and border-associated ChP macrophages, causes increased CSF production from ChP epithelial cells via phospho-activation of the TNF-receptor-associated kinase SPAK, which serves as a regulatory scaffold of a multi-ion transporter protein complex. Genetic or pharmacological immunomodulation prevents PIH and PHH by antagonizing SPAK-dependent CSF hypersecretion. These results reveal the ChP as a dynamic, cellularly heterogeneous tissue with highly regulated immune-secretory capacity, expand our understanding of ChP immune-epithelial cell cross talk, and reframe PIH and PHH as related neuroimmune disorders vulnerable to small molecule pharmacotherapy.


Choroid Plexus , Hydrocephalus , Humans , Blood-Brain Barrier/metabolism , Brain/metabolism , Choroid Plexus/metabolism , Hydrocephalus/cerebrospinal fluid , Hydrocephalus/immunology , Immunity, Innate , Cytokine Release Syndrome/pathology
15.
Neurology ; 100(22): 1067-1071, 2023 05 30.
Article En | MEDLINE | ID: mdl-36720639

In the 20th century, the advent of neuroimaging dramatically altered the field of neurologic care. However, despite iterative advances since the invention of CT and MRI, little progress has been made to bring MR neuroimaging to the point of care. Recently, the emergence of a low-field (<1 T) portable MRI (pMRI) is setting the stage to revolutionize the landscape of accessible neuroimaging. Users can transport the pMRI into a variety of locations, using a standard 110-220 V wall outlet. In this article, we discuss current applications for pMRI, including in the acute and critical care settings, the barriers to broad implementation, and future opportunities.


Magnetic Resonance Imaging , Neurology , Humans , Magnetic Resonance Imaging/methods , Neuroimaging , Neurology/history
16.
mBio ; 13(6): e0268822, 2022 12 20.
Article En | MEDLINE | ID: mdl-36374038

Hydrocephalus, the leading indication for childhood neurosurgery worldwide, is particularly prevalent in low- and middle-income countries. Hydrocephalus preceded by an infection, or postinfectious hydrocephalus, accounts for up to 60% of hydrocephalus in these areas. Since many children with hydrocephalus suffer poor long-term outcomes despite surgical intervention, prevention of hydrocephalus remains paramount. Our previous studies implicated a novel bacterial pathogen, Paenibacillus thiaminolyticus, as a causal agent of neonatal sepsis and postinfectious hydrocephalus in Uganda. Here, we report the isolation of three P. thiaminolyticus strains, Mbale, Mbale2, and Mbale3, from patients with postinfectious hydrocephalus. We constructed complete genome assemblies of the clinical isolates as well as the nonpathogenic P. thiaminolyticus reference strain and performed comparative genomic and proteomic analyses to identify potential virulence factors. All three isolates carry a unique beta-lactamase gene, and two of the three isolates exhibit resistance in culture to the beta-lactam antibiotics penicillin and ampicillin. In addition, a cluster of genes carried on a mobile genetic element that encodes a putative type IV pilus operon is present in all three clinical isolates but absent in the reference strain. CRISPR-mediated deletion of the gene cluster substantially reduced the virulence of the Mbale strain in mice. Comparative proteogenomic analysis identified various additional potential virulence factors likely acquired on mobile genetic elements in the virulent strains. These results provide insight into the emergence of virulence in P. thiaminolyticus and suggest avenues for the diagnosis and treatment of this novel bacterial pathogen. IMPORTANCE Postinfectious hydrocephalus, a devastating sequela of neonatal infection, is associated with increased childhood mortality and morbidity. A novel bacterial pathogen, Paenibacillus thiaminolyticus, is highly associated with postinfectious hydrocephalus in an African cohort. Whole-genome sequencing, RNA sequencing, and proteomics of clinical isolates and a reference strain in combination with CRISPR editing identified type IV pili as a critical virulence factor for P. thiaminolyticus infection. Acquisition of a type IV pilus-encoding mobile genetic element critically contributed to converting a nonpathogenic strain of P. thiaminolyticus into a pathogen capable of causing devastating diseases. Given the widespread presence of type IV pilus in pathogens, the presence of the type IV pilus operon could serve as a diagnostic and therapeutic target in P. thiaminolyticus and related bacteria.


Proteomics , Virulence Factors , Mice , Animals , Virulence Factors/genetics , Uganda , Fimbriae, Bacterial/genetics
17.
SIAM J Control Optim ; 60(2): S27-S48, 2022.
Article En | MEDLINE | ID: mdl-36338855

It is known that the parameters in the deterministic and stochastic SEIR epidemic models are structurally identifiable. For example, from knowledge of the infected population time series I(t) during the entire epidemic, the parameters can be successfully estimated. In this article we observe that estimation will fail in practice if only infected case data during the early part of the epidemic (prepeak) is available. This fact can be explained using a well-known phenomenon called dynamical compensation. We use this concept to derive an unidentifiability manifold in the parameter space of SEIR that consists of parameters indistinguishable from I(t) early in the epidemic. Thus, identifiability depends on the extent of the system trajectory that is available for observation. Although the existence of the unidentifiability manifold obstructs the ability to exactly determine the parameters, we suggest that it may be useful for uncertainty quantification purposes. A variant of SEIR recently proposed for COVID-19 modeling is also analyzed, and an analogous unidentifiability surface is derived.

18.
J Neural Eng ; 19(5)2022 10 07.
Article En | MEDLINE | ID: mdl-36126646

All electric and magnetic stimulation of the brain deposits thermal energy in the brain. This occurs through either Joule heating of the conductors carrying current through electrodes and magnetic coils, or through dissipation of energy in the conductive brain.Objective.Although electrical interaction with brain tissue is inseparable from thermal effects when electrodes are used, magnetic induction enables us to separate Joule heating from induction effects by contrasting AC and DC driving of magnetic coils using the same energy deposition within the conductors. Since mammalian cortical neurons have no known sensitivity to static magnetic fields, and if there is no evidence of effect on spike timing to oscillating magnetic fields, we can presume that the induced electrical currents within the brain are below the molecular shot noise where any interaction with tissue is purely thermal.Approach.In this study, we examined a range of frequencies produced from micromagnetic coils operating below the molecular shot noise threshold for electrical interaction with single neurons.Main results.We found that small temperature increases and decreases of 1∘C caused consistent transient suppression and excitation of neurons during temperature change. Numerical modeling of the biophysics demonstrated that the Na-K pump, and to a lesser extent the Nernst potential, could account for these transient effects. Such effects are dependent upon compartmental ion fluxes and the rate of temperature change.Significance.A new bifurcation is described in the model dynamics that accounts for the transient suppression and excitation; in addition, we note the remarkable similarity of this bifurcation's rate dependency with other thermal rate-dependent tipping points in planetary warming dynamics. These experimental and theoretical findings demonstrate that stimulation of the brain must take into account small thermal effects that are ubiquitously present in electrical and magnetic stimulation. More sophisticated models of electrical current interaction with neurons combined with thermal effects will lead to more accurate modulation of neuronal activity.


Brain , Neurons , Animals , Biophysics , Brain/physiology , Electric Conductivity , Electric Stimulation , Electrodes , Mammals , Neurons/physiology
19.
Genome Biol ; 23(1): 166, 2022 08 01.
Article En | MEDLINE | ID: mdl-35915508

BACKGROUND: Individual and environmental health outcomes are frequently linked to changes in the diversity of associated microbial communities. Thus, deriving health indicators based on microbiome diversity measures is essential. While microbiome data generated using high-throughput 16S rRNA marker gene surveys are appealing for this purpose, 16S surveys also generate a plethora of spurious microbial taxa. RESULTS: When this artificial inflation in the observed number of taxa is ignored, we find that changes in the abundance of detected taxa confound current methods for inferring differences in richness. Experimental evidence, theory-guided exploratory data analyses, and existing literature support the conclusion that most sub-genus discoveries are spurious artifacts of clustering 16S sequencing reads. We proceed to model a 16S survey's systematic patterns of sub-genus taxa generation as a function of genus abundance to derive a robust control for false taxa accumulation. These controls unlock classical regression approaches for highly flexible differential richness inference at various levels of the surveyed microbial assemblage: from sample groups to specific taxa collections. The proposed methodology for differential richness inference is available through an R package, Prokounter. CONCLUSIONS: False species discoveries bias richness estimation and confound differential richness inference. In the case of 16S microbiome surveys, supporting evidence indicate that most sub-genus taxa are spurious. Based on this finding, a flexible method is proposed and is shown to overcome the confounding problem noted with current approaches for differential richness inference. Package availability: https://github.com/mskb01/prokounter.


Bacteria , Microbiota , Artifacts , Bacteria/genetics , Cluster Analysis , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
20.
BMC Genomics ; 23(1): 439, 2022 Jun 13.
Article En | MEDLINE | ID: mdl-35698050

We introduce mirTarRnaSeq, an R/Bioconductor package for quantitative assessment of miRNA-mRNA relationships within sample cohorts. mirTarRnaSeq is a statistical package to explore predicted or pre-hypothesized miRNA-mRNA relationships following target prediction.We present two use cases applying mirTarRnaSeq. First, to identify miRNA targets, we examined EBV miRNAs for interaction with human and virus transcriptomes of stomach adenocarcinoma. This revealed enrichment of mRNA targets highly expressed in CD105+ endothelial cells, monocytes, CD4+ T cells, NK cells, CD19+ B cells, and CD34 cells. Next, to investigate miRNA-mRNA relationships in SARS-CoV-2 (COVID-19) infection across time, we used paired miRNA and RNA sequenced datasets of SARS-CoV-2 infected lung epithelial cells across three time points (4, 12, and 24 hours post-infection). mirTarRnaSeq identified evidence for human miRNAs targeting cytokine signaling and neutrophil regulation immune pathways from 4 to 24 hours after SARS-CoV-2 infection. Confirming the clinical relevance of these predictions, three of the immune specific mRNA-miRNA relationships identified in human lung epithelial cells after SARS-CoV-2 infection were also observed to be differentially expressed in blood from patients with COVID-19. Overall, mirTarRnaSeq is a robust tool that can address a wide-range of biological questions providing improved prediction of miRNA-mRNA interactions.


COVID-19 , MicroRNAs , COVID-19/genetics , Endothelial Cells , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , SARS-CoV-2
...