Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Radiother Oncol ; 191: 110059, 2024 Feb.
Article En | MEDLINE | ID: mdl-38135186

BACKGROUND AND PURPOSE: Due to the high intrinsic radioresistance of pancreatic ductal adenocarcinoma (PDAC), radiotherapy (RT) is only beneficial in 30% of patients. Therefore, this study aimed to identify targets to improve the efficacy of RT in PDAC. MATERIALS AND METHODS: Alamar Blue proliferation and colony formation assay (CFA) were used to determine the radioresponse of a cohort of 38 murine PDAC cell lines. A gene set enrichment analysis was performed to reveal differentially expressed pathways. CFA, cell cycle distribution, γH2AX FACS analysis, and Caspase 3/7 SYTOX assay were used to examine the effect of a combination treatment using KIRA8 as an IRE1α-inhibitor and Ceapin-A7 as an inhibitor against ATF6. RESULTS: The unfolded protein response (UPR) was identified as a pathway highly expressed in radioresistant cell lines. Using the IRE1α-inhibitor KIRA8 or the ATF6-inhibitor Ceapin-A7 in combination with radiation, a radiosensitizing effect was observed in radioresistant cell lines, but no substantial alteration of the radioresponse in radiosensitive cell lines. Mechanistically, increased apoptosis by KIRA8 in combination with radiation and a cell cycle arrest in the G1 phase after ATF6 inhibition and radiation have been observed in radioresistant cell lines. CONCLUSION: So, our data show evidence that the UPR is involved in radioresistance of PDAC. Increased apoptosis and a G1 cell cycle arrest seem to be responsible for the radiosensitizing effect of UPR inhibition. These findings are supportive for developing novel combination treatment concepts in PDAC to overcome radioresistance.


Benzenesulfonamides , Carcinoma, Pancreatic Ductal , Naphthalenes , Pancreatic Neoplasms , Radiation-Sensitizing Agents , Humans , Animals , Mice , Endoribonucleases/genetics , Endoribonucleases/metabolism , Endoribonucleases/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/pharmacology , Cell Line, Tumor , Pancreatic Neoplasms/radiotherapy , Carcinoma, Pancreatic Ductal/radiotherapy , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Unfolded Protein Response , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Apoptosis , Cell Proliferation
2.
Cancers (Basel) ; 15(16)2023 Aug 10.
Article En | MEDLINE | ID: mdl-37627079

Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults. Despite modern, multimodal therapeutic options of surgery, chemotherapy, tumor-treating fields (TTF), and radiotherapy, the 5-year survival is below 10%. In order to develop new therapies, better preclinical models are needed that mimic the complexity of a tumor. In this work, we established a novel three-dimensional (3D) model for patient-derived GBM cell lines. To analyze the volume and growth pattern of primary GBM cells in 3D culture, a CoSeedisTM culture system was used, and radiation sensitivity in comparison to conventional 2D colony formation assay (CFA) was analyzed. Both culture systems revealed a dose-dependent reduction in survival, but the high variance in colony size and shape prevented reliable evaluation of the 2D cultures. In contrast, the size of 3D spheroids could be measured accurately. Immunostaining of spheroids grown in the 3D culture system showed an increase in the DNA double-strand-break marker γH2AX one hour after irradiation. After 24 h, a decrease in DNA damage was observed, indicating active repair mechanisms. In summary, this new translational 3D model may better reflect the tumor complexity and be useful for analyzing the growth, radiosensitivity, and DNA repair of patient-derived GBM cells.

3.
Cancers (Basel) ; 15(14)2023 Jul 19.
Article En | MEDLINE | ID: mdl-37509330

Postsurgical radiotherapy (RT) has been early proven to prevent local tumor recurrence, initially performed with whole brain RT (WBRT). Subsequent to disadvantageous cognitive sequalae for the patient and the broad distribution of modern linear accelerators, focal irradiation of the tumor has omitted WBRT in most cases. In many studies, the effectiveness of local RT of the resection cavity, either as single-fraction stereotactic radiosurgery (SRS) or hypo-fractionated stereotactic RT (hFSRT), has been demonstrated to be effective and safe. However, whereas prospective high-level incidence is still lacking on which dose and fractionation scheme is the best choice for the patient, further ablative techniques have come into play. Neoadjuvant SRS (N-SRS) prior to resection combines straightforward target delineation with an accelerated post-surgical phase, allowing an earlier start of systemic treatment or rehabilitation as indicated. In addition, low-energy intraoperative RT (IORT) on the surgical bed has been introduced as another alternative to external beam RT, offering sterilization of the cavity surface with steep dose gradients towards the healthy brain. This consensus paper summarizes current local treatment strategies for resectable brain metastases regarding available data and patient-centered decision-making.

5.
Cancers (Basel) ; 13(22)2021 Nov 12.
Article En | MEDLINE | ID: mdl-34830813

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers. Innovative treatment concepts may enhance oncological outcome. Clinically relevant tumor models are essential in developing new therapeutic strategies. In the present study, we used two human PDAC cell lines for an orthotopic xenograft mouse model and compared treatment characteristics between this in vivo tumor model and PDAC patients. Tumor-bearing mice received stereotactic high-precision irradiation using arc technique after 3D-treatment planning. Induction of DNA damage in tumors and organs at risk (OARs) was histopathologically analyzed by the DNA damage marker γH2AX and compared with results after unprecise whole-abdomen irradiation. Our mouse model and preclinical setup reflect the characteristics of PDAC patients and clinical RT. It was feasible to perform stereotactic high-precision RT after defining tumor and OARs by CT imaging. After stereotactic RT, a high rate of DNA damage was mainly observed in the tumor but not in OARs. The calculated dose distributions and the extent of the irradiation field correlate with histopathological staining and the clinical example. We established and validated 3D-planned stereotactic RT in an orthotopic PDAC mouse model, which reflects the human RT. The efficacy of the whole workflow of imaging, treatment planning, and high-precision RT was proven by longitudinal analysis showing a significant improved survival. Importantly, this model can be used to analyze tumor regression and therapy-related toxicity in one model and will allow drawing clinically relevant conclusions.

6.
Phys Imaging Radiat Oncol ; 20: 11-16, 2021 Oct.
Article En | MEDLINE | ID: mdl-34611553

BACKGROUND AND PURPOSE: Radiotherapy of thoracic tumours can lead to side effects in the lung, which may benefit from early diagnosis. We investigated the potential of X-ray dark-field computed tomography by a proof-of-principle murine study in a clinically relevant radiotherapeutic setting aiming at the detection of radiation-induced lung damage. MATERIAL AND METHODS: Six mice were irradiated with 20 Gy to the entire right lung. Together with five unirradiated control mice, they were imaged using computed tomography with absorption and dark-field contrast before and 16 weeks post irradiation. Mean pixel values for the right and left lung were calculated for both contrasts, and the right-to-left-ratio R of these means was compared. Radiologists also assessed the tomograms acquired 16 weeks post irradiation. Sensitivity, specificity, inter- and intra-reader accuracy were evaluated. RESULTS: In absorption contrast the group-average of R showed no increase in the control group and increased by 7% (p = 0.005) in the irradiated group. In dark-field contrast, it increased by 2% in the control group and by 14% (p = 0.005) in the irradiated group. Specificity was 100% for both contrasts but sensitivity was almost four times higher using dark-field tomography. Two cases were missed by absorption tomography but were detected by dark-field tomography. CONCLUSIONS: The applicability of X-ray dark-field computed tomography for the detection of radiation-induced lung damage was demonstrated in a pre-clinical mouse model. The presented results illustrate the differences between dark-field and absorption contrast and show that dark-field tomography could be advantageous in future clinical settings.

7.
Int J Mol Sci ; 22(13)2021 Jun 24.
Article En | MEDLINE | ID: mdl-34202589

BACKGROUND: Treatment resistance of glioblastoma multiforme to chemo- and radiotherapy remains a challenge yet to overcome. In particular, the O6-methylguanine-DNA-methyltransferase (MGMT) promoter unmethylated patients have only little benefit from chemotherapy treatment using temozolomide since MGMT counteracts its therapeutic efficacy. Therefore, new treatment options in radiotherapy need to be developed to inhibit MGMT and increase radiotherapy response. METHODS: Lomeguatrib, a highly specific MGMT inhibitor, was used to inactivate MGMT protein in vitro. Radiosensitivity of established human glioblastoma multiforme cell lines in combination with lomeguatrib was investigated using the clonogenic survival assay. Inhibition of MGMT was analyzed using Western Blot. Cell cycle distribution and apoptosis were investigated to determine the effects of lomeguatrib alone as well as in combination with ionizing radiation. RESULTS: Lomeguatrib significantly decreased MGMT protein and reduced radiation-induced G2/M arrest. A radiosensitizing effect of lomeguatrib was observed when administered at 1 µM and increased radioresistance at 20 µM. CONCLUSION: Low concentrations of lomeguatrib elicit radiosensitization, while high concentrations mediate a radioprotective effect.


DNA Methylation/drug effects , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Glioblastoma/genetics , Purines/pharmacology , Radiation Tolerance/drug effects , Radiation Tolerance/genetics , Tumor Suppressor Proteins/genetics , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , DNA Modification Methylases/metabolism , DNA Repair Enzymes/metabolism , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , G2 Phase Cell Cycle Checkpoints/drug effects , Glioblastoma/metabolism , Humans , Tumor Suppressor Proteins/metabolism
8.
Cancer Immunol Res ; 9(7): 779-789, 2021 07.
Article En | MEDLINE | ID: mdl-33906866

A crucial mode of action of trastuzumab is the labeling of HER2-positive (HER2+) tumor cells for the eradication by natural killer (NK) cells, a process called antibody-dependent cellular cytotoxicity (ADCC). However, despite widespread HER2 expression among cancer entities, only a fraction, with robust HER2 overexpression, benefits from trastuzumab therapy. ADCC requires both sufficient lymphocytic infiltration and close binding of the immune cells to the antibody-tagged tumor cells. We hypothesized that the chemokine CX3CL1 could improve both processes, as it is synthesized as a membrane-bound, adhesive form that is eventually cleaved into a soluble, chemotactic protein. Here, we show that CX3CL1 overexpression is a positive prognostic marker in breast cancer. CX3CL1 overexpression attracted tumor-suppressive lymphocytes, including NK cells, and inhibited tumor growth and lung metastasis in the syngeneic 4T1 breast cancer mouse model. In HER2+ SKBR3, MDA-MB-453, and HT-29 tumor cells, CX3CL1 overexpression increased NK cell-mediated cytotoxicity in vitro and acted synergistically with trastuzumab. Even though CX3CL1 did not further improve trastuzumab efficacy in vivo in the trastuzumab-sensitive MDA-MB-453 model, it compensated for NK-cell depletion and prolonged survival. In the HER2 low-expressing HT-29 model, however, CX3CL1 overexpression not only prolonged survival time but also overcame trastuzumab resistance in a partly NK cell-dependent manner. Taken together, these findings identify CX3CL1 as a feasible pharmacologic target to enable trastuzumab therapy in HER2 low-expressing cancers and render it a potential predictive biomarker to determine therapy responders.


Antineoplastic Agents, Immunological/pharmacology , Breast Neoplasms/drug therapy , Chemokine CX3CL1/genetics , Lung Neoplasms/drug therapy , Trastuzumab/pharmacology , Adult , Aged , Aged, 80 and over , Animals , Antineoplastic Agents, Immunological/therapeutic use , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Chemokine CX3CL1/metabolism , Cohort Studies , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/immunology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/immunology , Humans , Kaplan-Meier Estimate , Killer Cells, Natural/immunology , Lung Neoplasms/secondary , Mice , Middle Aged , Prognosis , Receptor, ErbB-2/analysis , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Signal Transduction/immunology , Trastuzumab/therapeutic use , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Young Adult
9.
Radiother Oncol ; 159: 265-276, 2021 06.
Article En | MEDLINE | ID: mdl-33839203

PURPOSE: Radioresistance in pancreatic cancer patients remains a critical obstacle to overcome. Understanding the molecular mechanisms underlying radioresistance may achieve better response to radiotherapy and thereby improving the poor treatment outcome. The aim of the present study was to elucidate the mechanisms leading to radioresistance by detailed characterization of isogenic radioresistant and radiosensitive cell lines. METHODS: The human pancreatic cancer cell lines, Panc-1 and MIA PaCa-2 were repeatedly exposed to radiation to generate radioresistant (RR) isogenic cell lines. The surviving cells were expanded, and their radiosensitivity was measured using colony formation assay. Tumor growth delay after irradiation was determined in a mouse pancreatic cancer xenograft model. Gene and protein expression were analyzed using RNA sequencing and Western blot, respectively. Cell cycle distribution and apoptosis (Caspase 3/7) were measured by FACS analysis. Reactive oxygen species generation and DNA damage were analyzed by detection of CM-H2DCFDA and γH2AX staining, respectively. Transwell chamber assays were used to investigate cell migration and invasion. RESULTS: The acquired radioresistance of RR cell lines was demonstrated in vitro and validated in vivo. Ingenuity pathway analysis of RNA sequencing data predicted activation of cell viability in both RR cell lines. RR cancer cell lines demonstrated greater DNA repair efficiency and lower basal and radiation-induced reactive oxygen species levels. Migration and invasion were differentially affected in RR cell lines. CONCLUSIONS: Our data indicate that repeated exposure to irradiation increases the expression of genes involved in cell viability and thereby leads to radioresistance. Mechanistically, increased DNA repair capacity and reduced oxidative stress might contribute to the radioresistant phenotype.


Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms , Animals , Apoptosis , Cell Line, Tumor , DNA Repair , Humans , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/radiotherapy , Radiation Tolerance/genetics , Reactive Oxygen Species
11.
Eur Radiol ; 31(6): 4175-4183, 2021 Jun.
Article En | MEDLINE | ID: mdl-33211140

OBJECTIVE: Assessing the advantage of x-ray dark-field contrast over x-ray transmission contrast in radiography for the detection of developing radiation-induced lung damage in mice. METHODS: Two groups of female C57BL/6 mice (irradiated and control) were imaged obtaining both contrasts monthly for 28 weeks post irradiation. Six mice received 20 Gy of irradiation to the entire right lung sparing the left lung. The control group of six mice was not irradiated. A total of 88 radiographs of both contrasts were evaluated for both groups based on average values for two regions of interest, covering (irradiated) right lung and healthy left lung. The ratio of these average values, R, was distinguished between healthy and damaged lungs for both contrasts. The time-point when deviations of R from healthy lung exceeded 3σ was determined and compared among contrasts. The Wilcoxon-Mann-Whitney test was used to test against the null hypothesis that there is no difference between both groups. A selection of 32 radiographs was assessed by radiologists. Sensitivity and specificity were determined in order to compare the diagnostic potential of both contrasts. Inter-reader and intra-reader accuracy were rated with Cohen's kappa. RESULTS: Radiation-induced morphological changes of lung tissue caused deviations from the control group that were measured on average 10 weeks earlier with x-ray dark-field contrast than with x-ray transmission contrast. Sensitivity, specificity, and accuracy doubled using dark-field radiography. CONCLUSION: X-ray dark-field radiography detects morphological changes of lung tissue associated with radiation-induced damage earlier than transmission radiography in a pre-clinical mouse model. KEY POINTS: • Significant deviations from healthy lung due to irradiation were measured after 16 weeks with x-ray dark-field radiography (p = 0.004). • Significant deviations occur on average 10 weeks earlier for x-ray dark-field radiography in comparison to x-ray transmission radiography. • Sensitivity and specificity doubled when using x-ray dark-field radiography instead of x-ray transmission radiography.


Lung , Animals , Female , Lung/diagnostic imaging , Mice , Mice, Inbred C57BL , Radiography , Sensitivity and Specificity , X-Rays
12.
Cancers (Basel) ; 12(12)2020 Dec 09.
Article En | MEDLINE | ID: mdl-33317198

Today, pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide with a five-year overall survival rate of less than 7%. Only 15-20% of patients are eligible for curative intent surgery at the time of diagnosis. Therefore, neoadjuvant treatment regimens have been introduced in order to downsize the tumor by chemotherapy and radiotherapy. To further increase the efficacy of radiotherapy, novel molecular biomarkers are urgently needed to define the subgroup of pancreatic cancer patients who would benefit most from radiotherapy. MicroRNAs (miRNAs) could have the potential to serve as novel predictive and prognostic biomarkers in patients with pancreatic cancer. In the present article, the role of miRNAs as blood biomarkers, which are associated with either radioresistance or radiation-induced changes of miRNAs in pancreatic cancer, is discussed. Furthermore, the manuscript provides own data of miRNAs identified in a pancreatic cancer mouse model as well as radiation-induced miRNA changes in the plasma of tumor-bearing mice.

13.
Mol Cell Proteomics ; 19(10): 1649-1663, 2020 10.
Article En | MEDLINE | ID: mdl-32651227

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers and known for its extensive genetic heterogeneity, high therapeutic resistance, and strong variation in intrinsic radiosensitivity. To understand the molecular mechanisms underlying radioresistance, we screened the phenotypic response of 38 PDAC cell lines to ionizing radiation. Subsequent phosphoproteomic analysis of two representative sensitive and resistant lines led to the reproducible identification of 7,800 proteins and 13,000 phosphorylation sites (p-sites). Approximately 700 p-sites on 400 proteins showed abundance changes after radiation in all cell lines regardless of their phenotypic sensitivity. Apart from recapitulating known radiation response phosphorylation markers such as on proteins involved in DNA damage repair, the analysis uncovered many novel members of a radiation-responsive signaling network that was apparent only at the level of protein phosphorylation. These regulated p-sites were enriched in potential ATM substrates and in vitro kinase assays corroborated 10 of these. Comparing the proteomes and phosphoproteomes of radiosensitive and -resistant cells pointed to additional tractable radioresistance mechanisms involving apoptotic proteins. For instance, elevated NADPH quinine oxidoreductase 1 (NQO1) expression in radioresistant cells may aid in clearing harmful reactive oxygen species. Resistant cells also showed elevated phosphorylation levels of proteins involved in cytoskeleton organization including actin dynamics and focal adhesion kinase (FAK) activity and one resistant cell line showed a strong migration phenotype. Pharmacological inhibition of the kinases FAK by Defactinib and of CHEK1 by Rabusertib showed a statistically significant sensitization to radiation in radioresistant PDAC cells. Together, the presented data map a comprehensive molecular network of radiation-induced signaling, improves the understanding of radioresistance and provides avenues for developing radiotherapeutic strategies.


Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phosphoproteins/metabolism , Protein Kinase Inhibitors/pharmacology , Proteomics , Radiation Tolerance , Actins/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Humans , Mice , Radiation Tolerance/drug effects , Reproducibility of Results , Signal Transduction/drug effects , Substrate Specificity/drug effects
14.
Sci Rep ; 10(1): 3815, 2020 03 02.
Article En | MEDLINE | ID: mdl-32123256

Pancreatic cancer is one of the most aggressive malignancies and is characterized by a low 5-year survival rate, a broad genetic diversity and a high resistance to conventional therapies. As a result, novel therapeutic agents to improve the current situation are needed urgently. Curcumin, a polyphenolic colorant derived from Curcuma longa root, showed pleiotropic influences on cellular pathways in vitro and amongst others anti-cancer properties including sensitization of tumor cells to chemo- and radiation-therapy. In this study, we evaluated the impact of Curcumin on the radiosensitivity of the established human pancreatic cancer cell lines Panc-1 and MiaPaCa-2 in vitro. In contrast to MiaPaCa-2 cells, we found a significant radiosensitization by Curcumin in the more radioresistant Panc-1 cells, possibly caused by cell cycle arrest in the most radiation-sensitive G2/M-phase at the time of irradiation. Furthermore, a significant enhancement of radiation-induced apoptosis, DNA-double-strand breaks and G2/M-arrest after curcumin treatment was observed in both cell lines. These in vitro findings suggest that especially patients with more radioresistant tumors could benefit from a radiation-concomitant, phytotherapeutic therapy with Curcumin.


Curcumin/pharmacology , Pancreatic Neoplasms/pathology , Radiation Tolerance/drug effects , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , DNA Damage , G2 Phase Cell Cycle Checkpoints/drug effects , G2 Phase Cell Cycle Checkpoints/radiation effects , Humans , M Phase Cell Cycle Checkpoints/drug effects , M Phase Cell Cycle Checkpoints/radiation effects
15.
Cells ; 8(10)2019 09 28.
Article En | MEDLINE | ID: mdl-31569342

The inhibition of heat shock protein 90 (Hsp90) a molecular chaperone for multiple oncogenic client proteins is considered as a promising approach to overcome radioresistance. Since most Hsp90 inhibitors activate HSF-1 that induces the transcription of cytoprotective and tumor-promoting stress proteins such as Hsp70 and Hsp27, a combined approach consisting of HSF-1 knockdown (k.d.) and Hsp90 inhibition was investigated. A specific HSF-1 k.d. was achieved in H1339 lung cancer cells using RNAi-Ready pSIRENRetroQ vectors with puromycin resistance. The Hsp90 inhibitor NVP-AUY922 was evaluated at low concentrations-ranging from 1-10 nM-in control and HSF-1 k.d. cells. Protein expression (i.e., Hsp27/Hsp70, HSF-1, pHSF-1, Akt, ß-actin) and transcriptional activity was assessed by western blot analysis and luciferase assays and radiosensitivity was measured by proliferation, apoptosis (Annexin V, active caspase 3), clonogenic cell survival, alkaline comet, γH2AX, 53BP1, and Rad51 foci assays. The k.d. of HSF-1 resulted in a significant reduction of basal and NVP-AUY922-induced Hsp70/Hsp27 expression levels. A combined approach consisting of HSF-1 k.d. and low concentrations of the Hsp90 inhibitor NVP-AUY922 reduces the Hsp90 client protein Akt and potentiates radiosensitization, which involves an impaired homologous recombination mediated by Rad51. Our findings are key for clinical applications of Hsp90 inhibitors with respect to adverse hepatotoxic effects.


Heat Shock Transcription Factors/genetics , Isoxazoles/pharmacology , Lung Neoplasms/genetics , RNA, Small Interfering/pharmacology , Radiation-Sensitizing Agents/pharmacology , Resorcinols/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism
16.
PLoS One ; 14(8): e0221502, 2019.
Article En | MEDLINE | ID: mdl-31430337

INTRODUCTION: The major stress-inducible heat shock protein 70 (Hsp70) is induced after different stress stimuli. In tumors, elevated intracellular Hsp70 levels were associated on the one hand with radio- and chemotherapy resistance and on the other hand with a favorable outcome for patients. This study was undertaken to investigate cytosolic Hsp70 (cHsp70) as a potential biomarker for progression free (PFS) and overall survival (OS) in patients with primary glioblastomas (GBM). METHODS: The cHsp70 expression in tumor tissue of 60 patients diagnosed with primary GBM was analyzed by immunohistochemistry. The cHsp70 expression was correlated to the PFS and OS of the patients. RESULTS: A high cHsp70 expression was associated with a prolonged PFS (hazard ratio = 0.374, p = 0.001) and OS (hazard ratio = 0.416, p = 0.014) in GBM patients treated according to the standard Stupp protocol with surgery, radiotherapy and temozolomide. CONCLUSIONS: These data suggest that the intracellular Hsp70 expression might serve as a prognostic marker in patients with primary GBM.


Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Cytosol/metabolism , Glioblastoma/metabolism , HSP70 Heat-Shock Proteins/metabolism , Adult , Aged , Brain Neoplasms/pathology , Disease-Free Survival , Female , Glioblastoma/pathology , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Multivariate Analysis , Treatment Outcome , Young Adult
17.
Radiat Environ Biophys ; 58(3): 433-438, 2019 08.
Article En | MEDLINE | ID: mdl-31201502

Supplementation with the antioxidant selenium is frequently performed in breast cancer patients to protect the normal tissue from radiation-induced side effects. However, concerns exist whether selenium also protects tumor cells from radiation-induced cell kill and thereby reduces the efficacy of radiotherapy. In this work, the effect of selenium administration on the radiosensitivity of breast cancer cells was evaluated in vitro. Physiological relevant selenium concentrations (70 and 140 µg/l) did not affect DNA double-strand breaks (γH2AX foci) after 4-Gy X-ray irradiation. Also apoptosis (caspase 3/7) after irradiation with 10 Gy was not influenced by selenium treatment in MDA-MB-231 and MCF7 cells. Most importantly, selenium supplementation did not impair the clonogenic survival of the breast cancer cell lines after irradiation (0, 2, 4, 6, 8 Gy). The data suggest that physiological relevant selenium concentrations administered in combination with radiation therapy do not deteriorate the efficacy of radiotherapy in breast cancer patients. However, randomized clinical trials comparing the effectiveness of radiotherapy and the associated side effects in patients with and without selenium supplementation are recommended.


Radiation Tolerance/drug effects , Selenium/chemistry , Apoptosis , Humans , MCF-7 Cells
18.
Cancer Cell ; 34(6): 996-1011.e8, 2018 12 10.
Article En | MEDLINE | ID: mdl-30537516

Identifying the earliest somatic changes in prostate cancer can give important insights into tumor evolution and aids in stratifying high- from low-risk disease. We integrated whole genome, transcriptome and methylome analysis of early-onset prostate cancers (diagnosis ≤55 years). Characterization across 292 prostate cancer genomes revealed age-related genomic alterations and a clock-like enzymatic-driven mutational process contributing to the earliest mutations in prostate cancer patients. Our integrative analysis identified four molecular subgroups, including a particularly aggressive subgroup with recurrent duplications associated with increased expression of ESRP1, which we validate in 12,000 tissue microarray tumors. Finally, we combined the patterns of molecular co-occurrence and risk-based subgroup information to deconvolve the molecular and clinical trajectories of prostate cancer from single patient samples.


Biomarkers, Tumor/genetics , DNA Methylation , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Transcriptome , Adult , Biomarkers, Tumor/metabolism , Evolution, Molecular , Humans , Male , Middle Aged , Mutation , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Risk Factors , Whole Genome Sequencing/methods
19.
Cancers (Basel) ; 10(11)2018 Nov 20.
Article En | MEDLINE | ID: mdl-30463322

Gliomas are primary brain tumors that present the majority of malignant adult brain tumors. Gliomas are subdivided into low- and high-grade tumors. Despite extensive research in recent years, the prognosis of malignant glioma patients remains poor. This is caused by naturally highly infiltrative capacities as well as high levels of radio- and chemoresistance. Additionally, it was shown that low linear energy transfer (LET) irradiation enhances migration and invasion of several glioma entities which might counteract today's treatment concepts. However, this finding is discussed controversially. In the era of personalized medicine, this controversial data might be attributed to the patient-specific heterogeneity that ultimately could be used for treatment. Thus, current developments in glioma therapy should be seen in the context of intrinsic and radiation-enhanced migration and invasion. Due to the natural heterogeneity of glioma cells and different radiation responses, a personalized radiation treatment concept is suggested and alternative radiation concepts are discussed.

20.
Methods Mol Biol ; 1699: 119-134, 2018.
Article En | MEDLINE | ID: mdl-29086374

Oncogenic types of human papillomaviruses (HPVs) are closely linked to the development of anogenital and head and neck cancers . The expression of the viral E6 and E7 genes is crucial for the transforming activities of HPVs. There is accumulating evidence that the HPV E6/E7 oncogenes can profoundly affect the cellular microRNA (miRNA) composition. Since alterations of miRNA expression levels can contribute to cancer development and maintenance, it will be important to understand in depth the crosstalk between the HPV oncogenes and the cellular miRNA network . Here, we describe a method to identify E6/E7-dependent intracellular miRNAs by small RNA deep sequencing , upon silencing of endogenous E6/E7 expression in HPV-positive cancer cells in vitro. In addition, we provide a protocol to identify E6/E7-dependent miRNA alterations in exosomes that are secreted by HPV-positive cancer cells in vitro.


DNA-Binding Proteins/genetics , High-Throughput Nucleotide Sequencing/methods , MicroRNAs/analysis , Oncogene Proteins, Viral/genetics , Papillomaviridae/isolation & purification , Papillomavirus E7 Proteins/genetics , Uterine Cervical Neoplasms/virology , DNA-Binding Proteins/metabolism , Exosomes/metabolism , Female , HeLa Cells , Humans , MicroRNAs/genetics , Oncogene Proteins, Viral/metabolism , Papillomaviridae/genetics , Papillomavirus E7 Proteins/metabolism , Statistics as Topic , Transfection
...