Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(4)2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38675847

RESUMEN

Ticks are the main arthropod vector of pathogens to humans and livestock in the British Isles. Despite their role as a vector of disease, many aspects of tick biology, ecology, and microbial association are poorly understood. To address this, we investigated the composition of the microbiome of adult and nymphal Ixodes ricinus ticks. The ticks were collected on a dairy farm in Southwest England and RNA extracted for whole genome sequencing. Sequences were detected from a range of microorganisms, particularly tick-associated viruses, bacteria, and nematodes. A majority of the viruses were attributed to phlebo-like and nairo-like virus groups, demonstrating a high degree of homology with the sequences present in I. ricinus from mainland Europe. A virus sharing a high sequence identity with Chimay rhabdovirus, previously identified in ticks from Belgium, was detected. Further investigations of I. ricinus ticks collected from additional sites in England and Wales also identified Chimay rhabdovirus viral RNA with varying prevalence in all tick populations. This suggests that Chimay rhabdovirus has a wide distribution and highlights the need for an extended exploration of the tick microbiome in the United Kingdom (UK).


Asunto(s)
Ixodes , Filogenia , Rhabdoviridae , Animales , Ixodes/virología , Ixodes/microbiología , Inglaterra , Gales , Rhabdoviridae/genética , Rhabdoviridae/clasificación , Rhabdoviridae/aislamiento & purificación , Genoma Viral , ARN Viral/genética , Microbiota , Secuenciación Completa del Genoma , Ninfa/virología , Ninfa/microbiología
2.
Emerg Infect Dis ; 30(2): 396-398, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38270166

RESUMEN

We report fatal West Nile virus (WNV) infection in a 7-year-old mare returning to the United Kingdom from Spain. Case timeline and clustering of virus sequence with recent WNV isolates suggest that transmission occurred in Andalusía, Spain. Our findings highlight the importance of vaccination for horses traveling to WNV-endemic regions.


Asunto(s)
Fiebre del Nilo Occidental , Animales , Femenino , Análisis por Conglomerados , Caballos , España/epidemiología , Reino Unido/epidemiología , Fiebre del Nilo Occidental/diagnóstico , Fiebre del Nilo Occidental/veterinaria
4.
J Gen Virol ; 104(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37584553

RESUMEN

Type I interferons (IFNs) are the major host defence against viral infection and are induced following activation of cell surface or intracellular pattern recognition receptors, including retinoic-acid-inducible gene I (RIG-I)-like receptors (RLRs). All cellular processes are shaped by the microenvironment and one important factor is the local oxygen tension. The majority of published studies on IFN signalling are conducted under laboratory conditions of 18% oxygen (O2), that do not reflect the oxygen levels in most organs (1-5 % O2). We studied the effect of low oxygen on IFN induction and signalling in induced Pluripotent Stem Cell (iPSC)-derived macrophages as a model for tissue-resident macrophages and assessed the consequence for Zika virus (ZIKV) infection. Hypoxic conditions dampened the expression of interferon-stimulated genes (ISGs) following RLR stimulation or IFN treatment at early time points. RNA-sequencing and bio-informatic analysis uncovered several pathways including changes in transcription factor availability, the presence of HIF binding sites in promoter regions, and CpG content that may contribute to the reduced ISG expression. Hypoxic conditions increased the abundance of ZIKV RNA highlighting the importance of understanding how low oxygen conditions in the local microenvironment affect pathogen sensing and host defences.


Asunto(s)
Células Madre Pluripotentes Inducidas , Interferón Tipo I , Infección por el Virus Zika , Virus Zika , Humanos , Virus Zika/genética , Células Madre Pluripotentes Inducidas/metabolismo , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Receptores Inmunológicos , Interferón Tipo I/metabolismo , Macrófagos/metabolismo , Inmunidad Innata , ARN , Hipoxia , Oxígeno/farmacología
5.
iScience ; 26(7): 107007, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37534138

RESUMEN

Human immunodeficiency virus 1 (HIV-1) causes major health burdens worldwide and still lacks curative therapies and vaccines. Circadian rhythms are endogenous daily oscillations that coordinate an organism's response to its environment and invading pathogens. Peripheral viral loads of HIV-1 infected patients show diurnal variation; however, the underlying mechanisms remain unknown. Here, we demonstrate a role for the cell-intrinsic clock to regulate rhythmic HIV-1 replication in circadian-synchronized systems. Silencing the circadian activator Bmal1 abolishes this phenotype, and we observe BMAL1 binding to the HIV-1 promoter. Importantly, we show differential binding of the nuclear receptors REV-ERB and ROR to the HIV-long terminal repeat at different circadian times, demonstrating a dynamic interplay in time-of-day regulation of HIV-1 transcription. Bioinformatic analysis shows circadian regulation of host factors that control HIV-1 replication, providing an additional mechanism for rhythmic viral replication. This study increases our understanding of the circadian regulation of HIV-1, which can ultimately inform new therapies.

6.
J Med Microbiol ; 72(7)2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37459154

RESUMEN

West Nile virus (WNV) is a positive-sense single-stranded RNA virus belonging to the Flaviviridae family and is maintained in an enzootic cycle between avian hosts and mosquito vectors. Humans, horses and other mammals are susceptible to infection but are dead-end hosts due to a low viraemia. The disease can manifest itself in a variety of clinical signs and symptoms in people and horses from mild fever to severe encephalitis and morbidity. There are no vaccines licensed for human protection, but parts of Europe, North America, Africa and Australia have vaccines commercially available for horses.


Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Humanos , Animales , Caballos , Virus del Nilo Occidental/genética , Fiebre del Nilo Occidental/veterinaria , Fiebre del Nilo Occidental/diagnóstico , Mamíferos , Europa (Continente) , África
7.
iScience ; 24(10): 103144, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34545347

RESUMEN

The coronavirus disease 2019 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus, is a global health issue with unprecedented challenges for public health. SARS-CoV-2 primarily infects cells of the respiratory tract via spike glycoprotein binding to angiotensin-converting enzyme (ACE2). Circadian rhythms coordinate an organism's response to its environment and can regulate host susceptibility to virus infection. We demonstrate that silencing the circadian regulator Bmal1 or treating lung epithelial cells with the REV-ERB agonist SR9009 reduces ACE2 expression and inhibits SARS-CoV-2 entry and replication. Importantly, treating infected cells with SR9009 limits SARS-CoV-2 replication and secretion of infectious particles, showing that post-entry steps in the viral life cycle are influenced by the circadian system. Transcriptome analysis revealed that Bmal1 silencing induced interferon-stimulated gene transcripts in Calu-3 lung epithelial cells, providing a mechanism for the circadian pathway to limit SARS-CoV-2 infection. Our study highlights alternative approaches to understand and improve therapeutic targeting of SARS-CoV-2.

8.
bioRxiv ; 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33758862

RESUMEN

The COVID-19 pandemic, caused by SARS-CoV-2 coronavirus, is a global health issue with unprecedented challenges for public health. SARS-CoV-2 primarily infects cells of the respiratory tract, via Spike glycoprotein binding angiotensin-converting enzyme (ACE2). Circadian rhythms coordinate an organism’s response to its environment and can regulate host susceptibility to virus infection. We demonstrate a circadian regulation of ACE2 in lung epithelial cells and show that silencing BMAL1 or treatment with a synthetic REV-ERB agonist SR9009 reduces ACE2 expression and inhibits SARS-CoV-2 entry. Treating infected cells with SR9009 limits viral replication and secretion of infectious particles, showing that post-entry steps in the viral life cycle are influenced by the circadian system. Transcriptome analysis revealed that Bmal1 silencing induced a wide spectrum of interferon stimulated genes in Calu-3 lung epithelial cells, providing a mechanism for the circadian pathway to dampen SARS-CoV-2 infection. Our study suggests new approaches to understand and improve therapeutic targeting of SARS-CoV-2.

9.
Nat Commun ; 12(1): 1658, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712578

RESUMEN

Chronic hepatitis B virus (HBV) infection is a major cause of liver disease and cancer worldwide for which there are no curative therapies. The major challenge in curing infection is eradicating or silencing the covalent closed circular DNA (cccDNA) form of the viral genome. The circadian factors BMAL1/CLOCK and REV-ERB are master regulators of the liver transcriptome and yet their role in HBV replication is unknown. We establish a circadian cycling liver cell-model and demonstrate that REV-ERB directly regulates NTCP-dependent hepatitis B and delta virus particle entry. Importantly, we show that pharmacological activation of REV-ERB inhibits HBV infection in vitro and in human liver chimeric mice. We uncover a role for BMAL1 to bind HBV genomes and increase viral promoter activity. Pharmacological inhibition of BMAL1 through REV-ERB ligands reduces pre-genomic RNA and de novo particle secretion. The presence of conserved E-box motifs among members of the Hepadnaviridae family highlight an evolutionarily conserved role for BMAL1 in regulating this family of small DNA viruses.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Virus de la Hepatitis B/fisiología , Replicación Viral/fisiología , Animales , Relojes Biológicos/efectos de los fármacos , Relojes Biológicos/genética , Ritmo Circadiano/genética , ADN Circular , ADN Viral/metabolismo , Regulación de la Expresión Génica , Genoma Viral , Células Hep G2 , Hepatitis B/virología , Virus de la Hepatitis B/genética , Hepatitis B Crónica/genética , Hepatocitos/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Hígado/metabolismo , Ratones , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Regiones Promotoras Genéticas , Simportadores/metabolismo , Transcriptoma , Virión/metabolismo , Internalización del Virus
10.
Nat Commun ; 11(1): 4938, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009401

RESUMEN

Antiviral strategies to inhibit Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) and the pathogenic consequences of COVID-19 are urgently required. Here, we demonstrate that the NRF2 antioxidant gene expression pathway is suppressed in biopsies obtained from COVID-19 patients. Further, we uncover that NRF2 agonists 4-octyl-itaconate (4-OI) and the clinically approved dimethyl fumarate (DMF) induce a cellular antiviral program that potently inhibits replication of SARS-CoV2 across cell lines. The inhibitory effect of 4-OI and DMF extends to the replication of several other pathogenic viruses including Herpes Simplex Virus-1 and-2, Vaccinia virus, and Zika virus through a type I interferon (IFN)-independent mechanism. In addition, 4-OI and DMF limit host inflammatory responses to SARS-CoV2 infection associated with airway COVID-19 pathology. In conclusion, NRF2 agonists 4-OI and DMF induce a distinct IFN-independent antiviral program that is broadly effective in limiting virus replication and in suppressing the pro-inflammatory responses of human pathogenic viruses, including SARS-CoV2.


Asunto(s)
Antiinflamatorios/farmacología , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Dimetilfumarato/agonistas , Factor 2 Relacionado con NF-E2/metabolismo , Neumonía Viral/tratamiento farmacológico , Succinatos/agonistas , Adulto , Antioxidantes/farmacología , Betacoronavirus/metabolismo , COVID-19 , Infecciones por Coronavirus/virología , Dimetilfumarato/farmacología , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Interferón Tipo I , Pulmón/patología , Masculino , Factor 2 Relacionado con NF-E2/genética , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Transducción de Señal/efectos de los fármacos , Succinatos/farmacología , Replicación Viral/efectos de los fármacos
11.
Viruses ; 12(11)2020 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-33113858

RESUMEN

The ability to detect and respond to varying oxygen tension is an essential prerequisite to life. Several mechanisms regulate the cellular response to oxygen including the prolyl hydroxylase domain (PHD)/factor inhibiting HIF (FIH)-hypoxia inducible factor (HIF) pathway, cysteamine (2-aminoethanethiol) dioxygenase (ADO) system, and the lysine-specific demethylases (KDM) 5A and KDM6A. Using a systems-based approach we discuss the literature on oxygen sensing pathways in the context of virus replication in different tissues that experience variable oxygen tension. Current information supports a model where the PHD-HIF pathway enhances the replication of viruses infecting tissues under low oxygen, however, the reverse is true for viruses with a selective tropism for higher oxygen environments. Differences in oxygen tension and associated HIF signaling may play an important role in viral tropism and pathogenesis. Thus, pharmaceutical agents that modulate HIF activity could provide novel treatment options for viral infections and associated pathological conditions.


Asunto(s)
Oxígeno/metabolismo , Transducción de Señal , Tropismo Viral , Replicación Viral , Virus/patogenicidad , Animales , Humanos , Hipoxia , Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Proteínas Represoras/metabolismo , Virus/clasificación , Virus/metabolismo
13.
Sci Rep ; 10(1): 13271, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764708

RESUMEN

Human immunodeficiency virus 1 (HIV-1) is a life-threatening pathogen that still lacks a curative therapy or vaccine. Despite the reduction in AIDS-related deaths achieved by current antiretroviral therapies, drawbacks including drug resistance and the failure to eradicate infection highlight the need to identify new pathways to target the infection. Circadian rhythms are endogenous 24-h oscillations which regulate physiological processes including immune responses to infection, and there is an emerging role for the circadian components in regulating viral replication. The molecular clock consists of transcriptional/translational feedback loops that generate rhythms. In mammals, BMAL1 and CLOCK activate rhythmic transcription of genes including the nuclear receptor REV-ERBα, which represses BMAL1 and plays an essential role in sustaining a functional clock. We investigated whether REV-ERB activity regulates HIV-1 replication and found REV-ERB agonists inhibited HIV-1 promoter activity in cell lines, primary human CD4 T cells and macrophages, whilst antagonism or genetic disruption of REV-ERB increased promoter activity. The REV-ERB agonist SR9009 inhibited promoter activity of diverse HIV-subtypes and HIV-1 replication in primary T cells. This study shows a role for REV-ERB synthetic agonists to inhibit HIV-1 LTR promoter activity and viral replication, supporting a role for circadian clock components in regulating HIV-1 replication.


Asunto(s)
Antivirales/farmacología , Duplicado del Terminal Largo de VIH/efectos de los fármacos , VIH-1/fisiología , Pirrolidinas/farmacología , Tiofenos/farmacología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Línea Celular , Relojes Circadianos/efectos de los fármacos , VIH-1/efectos de los fármacos , Humanos , Células Jurkat , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/virología , Regiones Promotoras Genéticas/efectos de los fármacos , Receptores de Hormona Tiroidea/metabolismo , Replicación Viral/efectos de los fármacos , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/metabolismo
14.
Cells ; 9(6)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560274

RESUMEN

The Zika virus (ZIKV) has received much attention due to an alarming increase in cases of neurological disorders including congenital Zika syndrome associated with infection. To date, there is no effective treatment available. An immediate response by the innate immune system is crucial for effective control of the virus. Using CRISPR/Cas9-mediated knockouts in A549 cells, we investigated the individual contributions of the RIG-I-like receptors MDA5 and RIG-I to ZIKV sensing and control of this virus by using a Brazilian ZIKV strain. We show that RIG-I is the main sensor for ZIKV in A549 cells. Surprisingly, we observed that loss of RIG-I and consecutive type I interferon (IFN) production led to virus-induced apoptosis. ZIKV non-structural protein NS5 was reported to interfere with type I IFN receptor signaling. Additionally, we show that ZIKV NS5 inhibits type I IFN induction. Overall, our study highlights the importance of RIG-I-dependent ZIKV sensing for the prevention of virus-induced cell death and shows that NS5 inhibits the production of type I IFN.


Asunto(s)
Muerte Celular/fisiología , Proteína 58 DEAD Box/metabolismo , Receptores Inmunológicos/metabolismo , Infección por el Virus Zika/virología , Animales , Chlorocebus aethiops/virología , Humanos , Inmunidad Innata/inmunología , Transducción de Señal/inmunología , Células Vero/virología , Proteínas no Estructurales Virales/metabolismo , Virus Zika/inmunología , Virus Zika/metabolismo , Infección por el Virus Zika/inmunología
15.
J Virol ; 92(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29950411

RESUMEN

Herpesvirus infections are highly prevalent in the human population and persist for life. They are often acquired subclinically but potentially progress to life-threatening diseases in immunocompromised individuals. The interferon system is indispensable for the control of herpesviral replication. However, the responsible antiviral effector mechanisms are not well characterized. The type I interferon-induced, human myxovirus resistance 2 (MX2) gene product MxB, a dynamin-like large GTPase, has recently been identified as a potent inhibitor of HIV-1. We now show that MxB also interferes with an early step of herpesvirus replication, affecting alpha-, beta-, and gammaherpesviruses before or at the time of immediate early gene expression. Defined MxB mutants influencing GTP binding and hydrolysis revealed that the effector mechanism against herpesviruses is thoroughly different from that against HIV-1. Overall, our findings demonstrate that MxB serves as a broadly acting intracellular restriction factor that controls the establishment of not only retrovirus but also herpesvirus infection of all three subfamilies.IMPORTANCE Human herpesviruses pose a constant threat to human health. Reactivation of persisting herpesvirus infections, particularly in immunocompromised individuals and the elderly, can cause severe diseases, such as zoster, pneumonia, encephalitis, or cancer. The interferon system is relevant for the control of herpesvirus replication as exemplified by fatal disease outcomes in patients with primary immunodeficiencies. Here, we describe the interferon-induced, human MX2 gene product MxB as an efficient restriction factor of alpha-, beta-, and gammaherpesviruses. MxB has previously been described as an inhibitor of HIV-1. Importantly, our mutational analyses of MxB reveal an antiviral mechanism of herpesvirus restriction distinct from that against HIV-1. Thus, the dynamin-like MxB GTPase serves as a broadly acting intracellular restriction factor that controls retrovirus as well as herpesvirus infections.


Asunto(s)
Infecciones por Herpesviridae/prevención & control , Herpesviridae/fisiología , Mutación , Proteínas de Resistencia a Mixovirus/genética , Replicación Viral/genética , Células A549 , Herpesviridae/genética , Infecciones por Herpesviridae/virología , Humanos , Inmunidad Innata , Interferones , Proteínas de Resistencia a Mixovirus/inmunología , Replicación Viral/inmunología
16.
J Virol ; 91(15)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28490593

RESUMEN

Bats serve as a reservoir for various, often zoonotic viruses, including significant human pathogens such as Ebola and influenza viruses. However, for unknown reasons, viral infections rarely cause clinical symptoms in bats. A tight control of viral replication by the host innate immune defense might contribute to this phenomenon. Transcriptomic studies revealed the presence of the interferon-induced antiviral myxovirus resistance (Mx) proteins in bats, but detailed functional aspects have not been assessed. To provide evidence that bat Mx proteins might act as key factors to control viral replication we cloned Mx1 cDNAs from three bat families, Pteropodidae, Phyllostomidae, and Vespertilionidae. Phylogenetically these bat Mx1 genes cluster closely with their human ortholog MxA. Using transfected cell cultures, minireplicon systems, virus-like particles, and virus infections, we determined the antiviral potential of the bat Mx1 proteins. Bat Mx1 significantly reduced the polymerase activity of viruses circulating in bats, including Ebola and influenza A-like viruses. The related Thogoto virus, however, which is not known to infect bats, was not inhibited by bat Mx1. Further, we provide evidence for positive selection in bat Mx1 genes that might explain species-specific antiviral activities of these proteins. Together, our data suggest a role for Mx1 in controlling these viruses in their bat hosts.IMPORTANCE Bats are a natural reservoir for various viruses that rarely cause clinical symptoms in bats but are dangerous zoonotic pathogens, like Ebola or rabies virus. It has been hypothesized that the interferon system might play a key role in controlling viral replication in bats. We speculate that the interferon-induced Mx proteins might be key antiviral factors of bats and have coevolved with bat-borne viruses. This study evaluated for the first time a large set of bat Mx1 proteins spanning three major bat families for their antiviral potential, including activity against Ebola virus and bat influenza A-like virus, and we describe here their phylogenetic relationship, revealing patterns of positive selection that suggest a coevolution with viral pathogens. By understanding the molecular mechanisms of the innate resistance of bats against viral diseases, we might gain important insights into how to prevent and fight human zoonotic infections caused by bat-borne viruses.


Asunto(s)
Antivirales/metabolismo , Quirópteros/inmunología , Quirópteros/virología , Proteínas de Resistencia a Mixovirus/metabolismo , Virus ARN/inmunología , Animales , Clonación Molecular , Evolución Molecular , Proteínas de Resistencia a Mixovirus/genética , Selección Genética
17.
J Exp Med ; 214(5): 1239-1248, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28396461

RESUMEN

Zoonotic transmission of influenza A viruses can give rise to devastating pandemics, but currently it is impossible to predict the pandemic potential of circulating avian influenza viruses. Here, we describe a new mouse model suitable for such risk assessment, based on the observation that the innate restriction factor MxA represents an effective species barrier that must be overcome by zoonotic viruses. Our mouse lacks functional endogenous Mx genes but instead carries the human MX1 locus as a transgene. Such transgenic mice were largely resistant to highly pathogenic avian H5 and H7 influenza A viruses, but were almost as susceptible to infection with influenza viruses of human origin as nontransgenic littermates. Influenza A viruses that successfully established stable lineages in humans have acquired adaptive mutations which allow partial MxA escape. Accordingly, an engineered avian H7N7 influenza virus carrying a nucleoprotein with signature mutations typically found in human virus isolates was more virulent in transgenic mice than parental virus, demonstrating that a few amino acid changes in the viral target protein can mediate escape from MxA restriction in vivo. Similar mutations probably need to be acquired by emerging influenza A viruses before they can spread in the human population.


Asunto(s)
Virus de la Influenza A/inmunología , Proteínas de Resistencia a Mixovirus/inmunología , Nucleoproteínas/genética , Animales , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Femenino , Humanos , Subtipo H7N7 del Virus de la Influenza A/genética , Subtipo H7N7 del Virus de la Influenza A/inmunología , Subtipo H7N7 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Proteínas de Resistencia a Mixovirus/genética
18.
Virology ; 488: 51-60, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26609934

RESUMEN

Foamy viruses (FV) are retroviruses that are widely distributed in primate and non-primate animal species. We tested here FV with capsids of simian and non-simian origin for sensitivity to interferon-ß (IFN-ß). Our data show significant inhibition of FV by IFN-ß early in infection of human HOS and THP-1 but not of HEK293T cells. The post-entry restriction of FV was not mediated by the interferon-induced MxB protein that was recently identified as a capsid-interacting restriction factor targeting Human immunodeficiency virus (HIV) before integration. Neither the ectopic expression of MxA or MxB in HEK293T cells nor the lack of MxB expression in CRISPR/CAS MxB THP-1 knockout cells impacted the infection of the tested FV. IFN-ß treated THP-1 and THP-1 KO MxB cells showed the same extend of restriction to FV. Together, the data demonstrate that IFN-ß inhibits FV early in infection and that MxB is not a restriction factor of FV.


Asunto(s)
Interferón beta/metabolismo , Proteínas de Resistencia a Mixovirus/metabolismo , Spumavirus/inmunología , Línea Celular , Humanos , Proteínas de Resistencia a Mixovirus/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...