Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36144551

RESUMEN

The prevalence of novel SARS-CoV-2 variants is also accompanied by an increased turnover rate and additional cleavage sites at the positions necessary for priming the Spike (S) protein. Of these priming sites, the proteolytically sensitive polybasic sequence of the activation loop at the S1/S2 interface and the S2' location within the S2 subunit of the S protein are cleaved by furin and TMPRSS2, which are important for the infection of the target cell. Neutrophils, migrating to the site of infection, secrete serine proteases to fight against pathogens. The serine proteases encompass neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (CatG), which can hydrolyze the peptide bond adjacent to the S1/S2 interface. SARS-CoV-2 might take the opportunity to hijack proteases from an immune response to support viral entry to the cell. The region near S704L within the S2 subunit, a novel amino acid substitution of SARS-CoV-2 Omicron sublineage BA.2.12.1, is located close to the S1/S2 interface. We found that NE, PR3, and CatG digested the peptide within this region; however, the S704L amino acid substitution altered cleavage sites for PR3. In conclusion, such an amino acid substitution modifies S2 antigen processing and might further impact the major histocompatibility complex (MHC) binding and T cell activation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Catepsina G , Furina/genética , Humanos , Elastasa de Leucocito , Mieloblastina , Péptido Hidrolasas/metabolismo , Péptidos , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
Elife ; 92020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32515736

RESUMEN

Energy-coupling factor type transporters (ECF) represent trace nutrient acquisition systems. Substrate binding components of ECF-transporters are membrane proteins with extraordinary affinity, allowing them to scavenge trace amounts of ligand. A number of molecules have been described as substrates of ECF-transporters, but an involvement in iron-acquisition is unknown. Host-induced iron limitation during infection represents an effective mechanism to limit bacterial proliferation. We identified the iron-regulated ECF-transporter Lha in the opportunistic bacterial pathogen Staphylococcus lugdunensis and show that the transporter is specific for heme. The recombinant substrate-specific subunit LhaS accepted heme from diverse host-derived hemoproteins. Using isogenic mutants and recombinant expression of Lha, we demonstrate that its function is independent of the canonical heme acquisition system Isd and allows proliferation on human cells as sources of nutrient iron. Our findings reveal a unique strategy of nutritional heme acquisition and provide the first example of an ECF-transporter involved in overcoming host-induced nutritional limitation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hemo/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Staphylococcus lugdunensis/metabolismo , Proteínas Bacterianas/genética , Proteínas de Transporte de Membrana/genética , Operón , Staphylococcus lugdunensis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA