Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 137(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37970744

RESUMEN

Embryos repair wounds rapidly, with no inflammation or scarring. Embryonic wound healing is driven by the collective movement of the cells around the lesion. The cells adjacent to the wound polarize the cytoskeletal protein actin and the molecular motor non-muscle myosin II, which accumulate at the wound edge forming a supracellular cable around the wound. Adherens junction proteins, including E-cadherin, are internalized from the wound edge and localize to former tricellular junctions at the wound margin, in a process necessary for cytoskeletal polarity. We found that the cells adjacent to wounds in the Drosophila embryonic epidermis polarized Talin, a core component of cell-extracellular matrix (ECM) adhesions, which preferentially accumulated at the wound edge. Integrin knockdown and inhibition of integrin binding delayed wound closure and reduced actin polarization and dynamics around the wound. Additionally, disrupting integrins caused a defect in E-cadherin reinforcement at tricellular junctions along the wound edge, suggesting crosstalk between integrin-based and cadherin-based adhesions. Our results show that cell-ECM adhesion contributes to embryonic wound repair and reveal an interplay between cell-cell and cell-ECM adhesion in the collective cell movements that drive rapid wound healing.


Asunto(s)
Actinas , Integrinas , Animales , Actinas/metabolismo , Integrinas/metabolismo , Cadherinas/metabolismo , Movimiento Celular/fisiología , Uniones Intercelulares/metabolismo , Drosophila/metabolismo , Cicatrización de Heridas/fisiología , Adhesión Celular
2.
Eur J Cell Biol ; 101(4): 151274, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36152392

RESUMEN

Several factors present in the extracellular environment regulate epithelial cell adhesion and dynamics. Among them, growth factors such as EGF, upon binding to their receptors at the cell surface, get internalized and directly activate the acto-myosin machinery. In this study we present the effects of EGF on the contractility of epithelial cancer cell colonies in confined geometry of different sizes. We show that the extent to which EGF triggers contractility scales with the cluster size and thus the number of cells. Moreover, the collective contractility results in a radial distribution of traction forces, which are dependent on integrin ß1 peripheral adhesions and transmitted to neighboring cells through adherens junctions. Taken together, EGF-induced contractility acts on the mechanical crosstalk and linkage between the cell-cell and cell-matrix compartments, regulating collective responses.


Asunto(s)
Factor de Crecimiento Epidérmico , Células Epiteliales , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Adhesión Celular/fisiología , Membrana Celular/metabolismo , Miosinas
3.
Bioinformatics ; 38(2): 594-596, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34390579

RESUMEN

SUMMARY: Our increasing ability to resolve fine details using light microscopy is matched by an increasing need to quantify images in order to detect and measure phenotypes. Despite their central role in cell biology, many image analysis tools require a financial investment, are released as proprietary software, or are implemented in languages not friendly for beginners, and thus are used as black boxes. To overcome these limitations, we have developed PyJAMAS, an open-source tool for image processing and analysis written in Python. PyJAMAS provides a variety of segmentation tools, including watershed and machine learning-based methods; takes advantage of Jupyter notebooks for the display and reproducibility of data analyses; and can be used through a cross-platform graphical user interface or as part of Python scripts via a comprehensive application programming interface. AVAILABILITY AND IMPLEMENTATION: PyJAMAS is open-source and available at https://bitbucket.org/rfg_lab/pyjamas. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Microscopía , Programas Informáticos , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador , Lenguaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA