Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(37): 20670-20678, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39230505

RESUMEN

Aflatoxins pose a major health concern and require strict monitoring in food products. Existing methods rely on hazardous organic solvents for extraction, prompting the development of a greener alternative. This study explores deep eutectic solvents (DESs) for aflatoxin extraction from pistachios, a valuable food product prone to aflatoxin contamination. The proposed method utilizes DES extraction followed by solid-phase extraction cleanup and ultrahigh-performance liquid chromatography coupled with fluorescence detector analysis. Recovery rates ranged from 85.5 to 99.1% for pistachios spiked with 1-8 ng/g aflatoxins, in compliance with EU regulations, with coefficients of variation less than 2.94%. The method demonstrates good sensitivity with limits of detection and quantification in the range of 0.02-0.22 ng/g and 0.05-0.72 ng/g, respectively. Greenness assessment using AGREEPrep and White Analytical Chemistry metrics confirms its environmental sustainability. This approach offers a promising, safer, and more eco-friendly alternative for aflatoxin extraction from complex food matrices like pistachios.


Asunto(s)
Aflatoxinas , Disolventes Eutécticos Profundos , Contaminación de Alimentos , Extracción en Fase Sólida , Aflatoxinas/análisis , Aflatoxinas/aislamiento & purificación , Cromatografía Líquida de Alta Presión/métodos , Contaminación de Alimentos/análisis , Extracción en Fase Sólida/métodos , Extracción en Fase Sólida/instrumentación , Disolventes Eutécticos Profundos/química , Nueces/química
2.
Food Chem ; 460(Pt 3): 140702, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39116768

RESUMEN

An optimized procedure for extracting and analyzing raw pistachio volatiles was developed through headspace sampling with high-capacity tools and subsequent analysis using comprehensive two-dimensional gas chromatography coupled with mass spectrometry. The examination of 18 pistachio samples belonging to different geographic areas led to the identification of a set of 99 volatile organic compounds (VOCs). Molecules were putatively identified using linear retention index, mass spectra similarity, and two-dimensional plot location. The impact of preprocessing and processing techniques on the aligned data matrix from a set of samples of different geographical origins, after removing contaminants, was evaluated. The combination of scaling with log-transformation, normalization with z-score, and data reduction with random forest machine learning algorithm generated a panel of 16 discriminatory VOC molecules. As a proof of concept, raw pistachios' VOC profile was employed for the first time to tentatively classify them based on their geographical origin.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Pistacia , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Pistacia/química , Pistacia/clasificación , Geografía , Prueba de Estudio Conceptual
3.
Foods ; 12(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36766055

RESUMEN

This review aims to provide a clear overview of the most important analytical development in aflatoxins analysis during the last decade (2013-2022) with a particular focus on nuts and nuts-related products. Aflatoxins (AFs), a group of mycotoxins produced mainly by certain strains of the genus Aspergillus fungi, are known to impose a serious threat to human health. Indeed, AFs are considered carcinogenic to humans, group 1, by the International Agency for Research on Cancer (IARC). Since these toxins can be found in different food commodities, food control organizations worldwide impose maximum levels of AFs for commodities affected by this threat. Thus, they represent a cumbersome issue in terms of quality control, analytical result reliability, and economical losses. It is, therefore, mandatory for food industries to perform analysis on potentially contaminated commodities before the trade. A full perspective of the whole analytical workflow, considering each crucial step during AFs investigation, namely sampling, sample preparation, separation, and detection, will be presented to the reader, focusing on the main challenges related to the topic. A discussion will be primarily held regarding sample preparation methodologies such as partitioning, solid phase extraction (SPE), and immunoaffinity (IA) related methods. This will be followed by an overview of the leading analytical techniques for the detection of aflatoxins, in particular liquid chromatography (LC) coupled to a fluorescence detector (FLD) and/or mass spectrometry (MS). Moreover, the focus on the analytical procedure will not be specific only to traditional methodologies, such as LC, but also to new direct approaches based on imaging and the ability to detect AFs, reducing the need for sample preparation and separative techniques.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA