Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(29): eadp6039, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028813

RESUMEN

The adult hippocampus generates new granule cells (aGCs) with functional capabilities that convey unique forms of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like cells (RGLs) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to study aGC differentiation using single-nuclei RNA sequencing. Transcriptional profiling revealed a continuous trajectory from RGLs to mature aGCs, with multiple immature stages bearing increasing levels of effector genes supporting growth, excitability, and synaptogenesis. Analysis of differential gene expression, pseudo-time trajectory, and transcription factors (TFs) revealed critical transitions defining four cellular states: quiescent RGLs, proliferative progenitors, immature aGCs, and mature aGCs. Becoming mature aGCs involved a transcriptional switch that shuts down pathways promoting cell growth, such SoxC TFs, to activate programs that likely control neuronal homeostasis. aGCs overexpressing Sox4 or Sox11 remained immature. Our results unveil precise molecular mechanisms driving adult RGLs through the pathway of neuronal differentiation.


Asunto(s)
Diferenciación Celular , Hipocampo , Neurogénesis , Neuronas , Factores de Transcripción SOXC , Animales , Hipocampo/metabolismo , Hipocampo/citología , Neuronas/metabolismo , Neuronas/citología , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Diferenciación Celular/genética , Neurogénesis/genética , Ratones , Transcripción Genética , Perfilación de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Células Ependimogliales/metabolismo , Células Ependimogliales/citología
2.
Bioinform Adv ; 4(1): vbae062, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779177

RESUMEN

Motivation: Single-cell RNA sequencing (scRNAseq) has transformed our ability to explore biological systems. Nevertheless, proficient expertise is essential for handling and interpreting the data. Results: In this article, we present scX, an R package built on the Shiny framework that streamlines the analysis, exploration, and visualization of single-cell experiments. With an interactive graphic interface, implemented as a web application, scX provides easy access to key scRNAseq analyses, including marker identification, gene expression profiling, and differential gene expression analysis. Additionally, scX seamlessly integrates with commonly used single-cell Seurat and SingleCellExperiment R objects, resulting in efficient processing and visualization of varied datasets. Overall, scX serves as a valuable and user-friendly tool for effortless exploration and sharing of single-cell data, simplifying some of the complexities inherent in scRNAseq analysis. Availability and implementation: Source code can be downloaded from https://github.com/chernolabs/scX. A docker image is available from dockerhub as chernolabs/scx.

3.
bioRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38260428

RESUMEN

The adult hippocampus generates new granule cells (aGCs) that exhibit distinct functional capabilities along development, conveying a unique form of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like neural stem cells (RGL) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to follow newborn aGCs along differentiation using single-nuclei RNA sequencing (snRNA-seq). Transcriptional profiling revealed a continuous trajectory from RGLs to mature aGCs, with multiple sequential immature stages bearing increasing levels of effector genes supporting growth, excitability and synaptogenesis. Remarkably, four discrete cellular states were defined by the expression of distinct sets of transcription factors (TFs): quiescent neural stem cells, proliferative progenitors, postmitotic immature aGCs, and mature aGCs. The transition from immature to mature aCGs involved a transcriptional switch that shutdown molecular cascades promoting cell growth, such as the SoxC family of TFs, to activate programs controlling neuronal homeostasis. Indeed, aGCs overexpressing Sox4 or Sox11 remained stalled at the immature state. Our results unveil precise molecular mechanisms driving adult neural stem cells through the pathway of neuronal differentiation.

4.
ArXiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-37961742

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has transformed our ability to explore biological systems. Nevertheless, proficient expertise is essential for handling and interpreting the data. In this paper, we present scX, an R package built on the Shiny framework that streamlines the analysis, exploration, and visualization of single-cell experiments. With an interactive graphic interface, implemented as a web application, scX provides easy access to key scRNAseq analyses, including marker identification, gene expression profiling, and differential gene expression analysis. Additionally, scX seamlessly integrates with commonly used single-cell Seurat and Single-CellExperiment R objects, resulting in efficient processing and visualization of varied datasets. Overall, scX serves as a valuable and user-friendly tool for effortless exploration and sharing of single-cell data, simplifying some of the complexities inherent in scRNAseq analysis.

5.
Cell Rep ; 42(9): 113086, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37676761

RESUMEN

Mammalian hippocampal circuits undergo extensive remodeling through adult neurogenesis. While this process has been widely studied, the specific contribution of adult-born granule cells (aGCs) to spatial operations in the hippocampus remains unknown. Here, we show that optogenetic activation of 4-week-old (young) aGCs in free-foraging mice produces a non-reversible reconfiguration of spatial maps in proximal CA3 while rarely evoking neural activity. Stimulation of the same neuronal cohort on subsequent days recruits CA3 neurons with increased efficacy but fails to induce further remapping. In contrast, stimulation of 8-week-old (mature) aGCs can reliably activate CA3 cells but produces no alterations in spatial maps. Our results reveal a unique role of young aGCs in remodeling CA3 representations, a potential that can be depleted and is lost with maturation. This ability could contribute to generate orthogonalized downstream codes supporting pattern separation.


Asunto(s)
Células-Madre Neurales , Humanos , Ratones , Animales , Hipocampo/fisiología , Neuronas/fisiología , Encéfalo , Neurogénesis/fisiología , Giro Dentado/fisiología , Mamíferos
6.
Hippocampus ; 33(4): 424-441, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36709408

RESUMEN

GABAergic inhibition is critical for the precision of neuronal spiking and the homeostatic regulation of network activity in the brain. Adult neurogenesis challenges network homeostasis because new granule cells (GCs) integrate continuously in the functional dentate gyrus. While developing, adult-born GCs undergo a transient state of enhanced excitability due to the delayed maturation of perisomatic GABAergic inhibition by parvalbumin interneurons (PV-INs). The mechanisms underlying this delayed synaptic maturation remain unknown. We examined the morphology and function of synapses formed by PV-INs onto new GCs over a 2-month interval in young adult mice, and investigated the influence of the synaptic adhesion molecule neuroligin-2 (NL2). Perisomatic appositions of PV-IN terminals onto new GCs were conspicuous at 2 weeks and continued to grow in size to reach a plateau over the fourth week. Postsynaptic knockdown of NL2 by expression of a short-hairpin RNA (shNL2) in new GCs resulted in smaller size of synaptic contacts, reduced area of perisomatic appositions of the vesicular GABA transporter VGAT, and the number of presynaptic active sites. GCs expressing shNL2 displayed spontaneous GABAergic responses with decreased frequency and amplitude, as well as slower kinetics compared to control GCs. In addition, postsynaptic responses evoked by optogenetic stimulation of PV-INs exhibited slow kinetics, increased paired-pulse ratio and coefficient of variation in GCs with NL2 knockdown, suggesting a reduction in the number of active synapses as well as in the probability of neurotransmitter release (Pr ). Our results demonstrate that synapses formed by PV-INs on adult-born GCs continue to develop beyond the point of anatomical growth, and require NL2 for the structural and functional maturation that accompanies the conversion into fast GABAergic transmission.


Asunto(s)
Proteínas del Tejido Nervioso , Neuronas , Ratones , Animales , Neuronas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Interneuronas/fisiología , Sinapsis/fisiología , Encéfalo/metabolismo
7.
Curr Opin Neurobiol ; 69: 124-130, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33873060

RESUMEN

Neurogenesis is a powerful mechanism for structural and functional remodeling that occurs in restricted areas of the adult brain. Although different neurotransmitters regulate various aspects of the progression from neural stem cell quiescence to neuronal maturation, GABA is the main player. The developmental switch from excitation to inhibition combined with a heterogeneous population of GABAergic interneurons that target different subcellular compartments provides multiple points for the regulation of development and function of new neurons. This complexity is enhanced by feedback and feedforward networks that act as sensors and controllers of circuit activity, impinging directly or indirectly onto developing granule cells and, subsequently, on mature neurons. Newly generated granule cells ultimately connect with input and output partners in a manner that is largely sculpted by the activity of local circuits.


Asunto(s)
Células-Madre Neurales , Neuronas , Neuronas GABAérgicas , Hipocampo , Interneuronas , Neurogénesis
8.
Neuron ; 108(2): 226-228, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33120019

RESUMEN

Adult neurogenesis depends on the decision of neural stem cells to leave quiescence and become neurons. In this issue, Asrican et al. show that the neuropeptide cholecystokinin released by interneurons promotes the neuronal fate through astrocytic signaling.


Asunto(s)
Células-Madre Neurales , Neuropéptidos , Astrocitos , Hipocampo , Interneuronas , Neurogénesis
9.
Cell Rep ; 30(1): 202-214.e4, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31914387

RESUMEN

A strong GABAergic tone imposes sparse levels of activity in the dentate gyrus of the hippocampus. This balance is challenged by the addition of new granule cells (GCs) with high excitability. How developing GCs integrate within local inhibitory networks remains unknown. We used optogenetics to study synaptogenesis between new GCs and GABAergic interneurons expressing parvalbumin (PV-INs) and somatostatin (SST-INs). PV-INs target the soma, and synapses become mature after 6 weeks. This transition is accelerated by exposure to an enriched environment. PV-INs exert efficient control of GC spiking and participate in both feedforward and feedback loops, a mechanism that would favor lateral inhibition and sparse coding. SST-INs target the dendrites, and synapses mature after 8 weeks. Outputs from GCs onto PV-INs develop faster than those onto SST-INs. Our results reveal a long-lasting transition wherein adult-born neurons remain poorly coupled to inhibition, which might enhance activity-dependent plasticity of input and output synapses.


Asunto(s)
Envejecimiento/metabolismo , Gránulos Citoplasmáticos/metabolismo , Interneuronas/metabolismo , Parvalbúminas/metabolismo , Somatostatina/metabolismo , Animales , Neuronas GABAérgicas/metabolismo , Células HEK293 , Humanos , Ratones , Inhibición Neural , Neurogénesis , Plasticidad Neuronal , Fracciones Subcelulares/metabolismo , Sinapsis/metabolismo
10.
Front Neurosci ; 13: 1000, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31619959

RESUMEN

The aging brain presents a general decline in plasticity that also affects hippocampal neurogenesis. Besides the well-known reduction in the rate of neuronal generation, development of new neurons is largely delayed in the aging brain. We have recently shown that this slow development is accelerated when middle-aged mice perform voluntary exercise in a running wheel. It is unclear whether the effects of exercise on neurogenic plasticity are persistent in time in a manner that might influence neuronal cohorts generated over an extended time span. To clarify these issues, we examined the effects of exercise length in 3-week-old neurons and found that their development is accelerated only when running occurs for long (3-4 weeks) but not short periods (1 week). Furthermore, chronic running acted with similar efficiency on neurons that were born at the onset, within, or at the end of the exercise period, lasting until 3 months. Interestingly, no effects were observed on neurons born 1 month after exercise had ended. Our results indicate that multiple neuronal cohorts born throughout the exercise span integrate very rapidly in the aging brain, such that the effects of running will accumulate and expand network assembly promoted by neurogenesis. These networks are likely to be more complex than those assembled in a sedentary mouse due to the faster and more efficient integration of new neurons.

11.
Front Neurosci ; 13: 739, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379489

RESUMEN

Synaptic modification in cortical structures underlies the acquisition of novel information that results in learning and memory formation. In the adult dentate gyrus, circuit remodeling is boosted by the generation of new granule cells (GCs) that contribute to specific aspects of memory encoding. These forms of plasticity decrease in the aging brain, where both the rate of adult neurogenesis and the speed of morphological maturation of newly generated neurons decline. In the young-adult brain, a brief novel experience accelerates the integration of new neurons. The extent to which such degree of plasticity is preserved in the aging hippocampus remains unclear. In this work, we characterized the time course of functional integration of adult-born GCs in middle-aged mice. We performed whole-cell recordings in developing GCs from Ascl1CreERT2;CAGfloxStopTom mice and found a late onset of functional excitatory synaptogenesis, which occurred at 4 weeks (vs. 2 weeks in young-adult mice). Overall mature excitability and maximal glutamatergic connectivity were achieved at 10 weeks. In contrast, large mossy fiber boutons (MFBs) in CA3 displayed mature morphological features including filopodial extensions at 4 weeks, suggesting that efferent connectivity develops faster than afference. Notably, new GCs from middle-aged mice exposed to enriched environment for 7 days showed an advanced degree of maturity at 3 weeks, revealed by the high frequency of excitatory postsynaptic responses, complex dendritic trees, and large size of MFBs with filopodial extensions. These findings demonstrate that adult-born neurons act as sensors that transduce behavioral stimuli into major network remodeling in the aging brain.

12.
J Neurosci ; 39(29): 5794-5815, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31133559

RESUMEN

Frontotemporal dementia (FTD) is characterized by neuronal loss in the frontal and temporal lobes of the brain. Here, we provide the first evidence of striking morphological alterations in dentate granule cells (DGCs) of FTD patients and in a mouse model of the disease, TauVLW mice. Taking advantage of the fact that the hippocampal dentate gyrus (DG) gives rise to newborn DGCs throughout the lifetime in rodents, we used RGB retroviruses to study the temporary course of these alterations in newborn DGCs of female TauVLW mice. In addition, retroviruses that encode either PSD95:GFP or Syn:GFP revealed striking alterations in the afferent and efferent connectivity of newborn TauVLW DGCs, and monosynaptic retrograde rabies virus tracing showed that these cells are disconnected from distal brain regions and local sources of excitatory innervation. However, the same cells exhibited a predominance of local inhibitory innervation. Accordingly, the expression of presynaptic and postsynaptic markers of inhibitory synapses was markedly increased in the DG of TauVLW mice and FTD patients. Moreover, an increased number of neuropeptide Y-positive interneurons in the DG correlated with a reduced number of activated egr-1+ DGCs in TauVLW mice. Finally, we tested the therapeutic potential of environmental enrichment and chemoactivation to reverse these alterations in mice. Both strategies reversed the morphological alterations of newborn DGCs and partially restored their connectivity in a mouse model of the disease. Moreover, our data point to remarkable morphological similarities between the DGCs of TauVLW mice and FTD patients.SIGNIFICANCE STATEMENT We show, for the first time to our knowledge, that the population of dentate granule cells is disconnected from other regions of the brain in the neurodegenerative disease frontotemporal dementia (FTD). These alterations were observed in FTD patients and in a mouse model of this disease. Moreover, we tested the therapeutic potential of two strategies, environmental enrichment and chemoactivation, to stimulate the activity of these neurons in mice. We found that some of the alterations were reversed by these therapeutic interventions.


Asunto(s)
Giro Dentado/metabolismo , Giro Dentado/patología , Modelos Animales de Enfermedad , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Neurogénesis/fisiología , Factores de Edad , Animales , Femenino , Demencia Frontotemporal/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
13.
Neuron ; 99(3): 425-427, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30092210

RESUMEN

The pathways that convert neural stem cells (NSCs) into functional neurons in the adult hippocampus are tightly regulated. In this issue of Neuron, Yeh et al. (2018) demonstrate that the activity of dentate mossy cells determines the balance between quiescence and activation of NSCs.


Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Adulto , Diferenciación Celular , Hipocampo , Humanos , Fibras Musgosas del Hipocampo , Neurogénesis
14.
Science ; 360(6386): 265-266, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29674579

Asunto(s)
Neuronas , Humanos
15.
Cell Stem Cell ; 23(1): 25-30, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29681514

RESUMEN

Renewed discussion about whether or not adult neurogenesis exists in the human hippocampus, and the nature and strength of the supporting evidence, has been reignited by two prominently published reports with opposite conclusions. Here, we summarize the state of the field and argue that there is currently no reason to abandon the idea that adult-generated neurons make important functional contributions to neural plasticity and cognition across the human lifespan.


Asunto(s)
Neurogénesis , Plasticidad Neuronal , Neuronas/citología , Adulto , Hipocampo/citología , Humanos
16.
Cell Rep ; 21(5): 1129-1139, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29091753

RESUMEN

During aging, the brain undergoes changes that impair cognitive capacity and circuit plasticity, including a marked decrease in production of adult-born hippocampal neurons. It is unclear whether development and integration of those new neurons are also affected by age. Here, we show that adult-born granule cells (GCs) in aging mice are scarce and exhibit slow development, but they display a remarkable potential for structural plasticity. Retrovirally labeled 3-week-old GCs in middle-aged mice were small, underdeveloped, and disconnected. Neuronal development and integration were accelerated by voluntary exercise or environmental enrichment. Similar effects were observed via knockdown of Lrig1, an endogenous negative modulator of neurotrophin receptors. Consistently, blocking neurotrophin signaling by Lrig1 overexpression abolished the positive effects of exercise. These results demonstrate an unparalleled degree of plasticity in the aging brain mediated by neurotrophins, whereby new GCs remain immature until becoming rapidly recruited to the network by activity.


Asunto(s)
Envejecimiento , Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Animales , Calbindinas/metabolismo , Proteínas de Unión al ADN , Dendritas/fisiología , Giro Dentado/metabolismo , Femenino , Técnicas In Vitro , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Proteínas Nucleares/metabolismo , Técnicas de Placa-Clamp , Condicionamiento Físico Animal , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal
17.
Sci Rep ; 7(1): 5042, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28698628

RESUMEN

The etiology of Parkinson's disease (PD) converges on a common pathogenic pathway of mitochondrial defects in which α-Synuclein (αSyn) is thought to play a role. However, the mechanisms by which αSyn and its disease-associated allelic variants cause mitochondrial dysfunction remain unknown. Here, we analyzed mitochondrial axonal transport and morphology in human-derived neurons overexpressing wild-type (WT) αSyn or the mutated variants A30P or A53T, which are known to have differential lipid affinities. A53T αSyn was enriched in mitochondrial fractions, inducing significant mitochondrial transport defects and fragmentation, while milder defects were elicited by WT and A30P. We found that αSyn-mediated mitochondrial fragmentation was linked to expression levels in WT and A53T variants. Targeted delivery of WT and A53T αSyn to the outer mitochondrial membrane further increased fragmentation, whereas A30P did not. Genomic editing to disrupt the N-terminal domain of αSyn, which is important for membrane association, resulted in mitochondrial elongation without changes in fusion-fission protein levels, suggesting that αSyn plays a direct physiological role in mitochondrial size maintenance. Thus, we demonstrate that the association of αSyn with the mitochondria, which is modulated by protein mutation and dosage, influences mitochondrial transport and morphology, highlighting its relevance in a common pathway impaired in PD.


Asunto(s)
Homeostasis , Mitocondrias/metabolismo , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Transporte Axonal , Células Madre Embrionarias Humanas/metabolismo , Humanos , Membranas Mitocondriales/metabolismo , Proteínas Mutantes/metabolismo , Tamaño de los Orgánulos , Dominios Proteicos , alfa-Sinucleína/química
19.
Neuron ; 93(3): 560-573.e6, 2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28111078

RESUMEN

Precise regulation of cellular metabolism is hypothesized to constitute a vital component of the developmental sequence underlying the life-long generation of hippocampal neurons from quiescent neural stem cells (NSCs). The identity of stage-specific metabolic programs and their impact on adult neurogenesis are largely unknown. We show that the adult hippocampal neurogenic lineage is critically dependent on the mitochondrial electron transport chain and oxidative phosphorylation machinery at the stage of the fast proliferating intermediate progenitor cell. Perturbation of mitochondrial complex function by ablation of the mitochondrial transcription factor A (Tfam) reproduces multiple hallmarks of aging in hippocampal neurogenesis, whereas pharmacological enhancement of mitochondrial function ameliorates age-associated neurogenesis defects. Together with the finding of age-associated alterations in mitochondrial function and morphology in NSCs, these data link mitochondrial complex function to efficient lineage progression of adult NSCs and identify mitochondrial function as a potential target to ameliorate neurogenesis-defects in the aging hippocampus.


Asunto(s)
Células Madre Adultas/metabolismo , Envejecimiento/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Neurogénesis , Neuronas/metabolismo , Células Madre Adultas/citología , Animales , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Hipocampo/citología , Ratones , Ratones Noqueados , Ratones Transgénicos , Células-Madre Neurales , Neuronas/citología , Fosforilación Oxidativa
20.
Curr Opin Neurobiol ; 42: 111-117, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28040643

RESUMEN

Adult neurogenesis emerges as a tremendous form of plasticity with the continuous addition and loss of neurons in the adult brain. It is unclear how preexisting adult circuits generated during development are capable of modifying existing connections to accommodate the thousands of new synapses formed and exchanged each day. Here we first make parallels with sensory deprivation studies and its ability to induce preexisting non-neurogenic adult circuits to undergo massive reorganization. We then review recent studies that show high structural and synaptic plasticity in circuits directly connected to adult-born neurons. Finally, we propose future directions in the field to decipher how host circuits can accommodate new neuron integration and to determine the impact of adult neurogenesis on global brain plasticity.


Asunto(s)
Encéfalo/fisiología , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Neuronas/citología , Neuronas/metabolismo , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA