Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 62
1.
Proc Natl Acad Sci U S A ; 121(21): e2318874121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38753510

The single-pass transmembrane protein Stromal Interaction Molecule 1 (STIM1), located in the endoplasmic reticulum (ER) membrane, possesses two main functions: It senses the ER-Ca2+ concentration and directly binds to the store-operated Ca2+ channel Orai1 for its activation when Ca2+ recedes. At high resting ER-Ca2+ concentration, the ER-luminal STIM1 domain is kept monomeric but undergoes di/multimerization once stores are depleted. Luminal STIM1 multimerization is essential to unleash the STIM C-terminal binding site for Orai1 channels. However, structural basis of the luminal association sites has so far been elusive. Here, we employed molecular dynamics (MD) simulations and identified two essential di/multimerization segments, the α7 and the adjacent region near the α9-helix in the sterile alpha motif (SAM) domain. Based on MD results, we targeted the two STIM1 SAM domains by engineering point mutations. These mutations interfered with higher-order multimerization of ER-luminal fragments in biochemical assays and puncta formation in live-cell experiments upon Ca2+ store depletion. The STIM1 multimerization impeded mutants significantly reduced Ca2+ entry via Orai1, decreasing the Ca2+ oscillation frequency as well as store-operated Ca2+ entry. Combination of the ER-luminal STIM1 multimerization mutations with gain of function mutations and coexpression of Orai1 partially ameliorated functional defects. Our data point to a hydrophobicity-driven binding within the ER-luminal STIM1 multimer that needs to switch between resting monomeric and activated multimeric state. Altogether, these data reveal that interactions between SAM domains of STIM1 monomers are critical for multimerization and activation of the protein.


Calcium , Endoplasmic Reticulum , Molecular Dynamics Simulation , Neoplasm Proteins , ORAI1 Protein , Protein Multimerization , Stromal Interaction Molecule 1 , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/chemistry , Humans , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/chemistry , Endoplasmic Reticulum/metabolism , Calcium/metabolism , ORAI1 Protein/metabolism , ORAI1 Protein/genetics , ORAI1 Protein/chemistry , Protein Domains , HEK293 Cells , Binding Sites , Protein Binding
2.
J Control Release ; 369: 668-683, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38548064

Local and long-lasting administration of potent chemotherapeutics is a promising therapeutic intervention to increase the efficiency of chemotherapy of hard-to-treat tumors such as the most lethal brain tumors, glioblastomas (GBM). However, despite high toxicity for GBM cells, potent chemotherapeutics such as gemcitabine (Gem) cannot be widely implemented as they do not efficiently cross the blood brain barrier (BBB). As an alternative method for continuous administration of Gem, we here operate freestanding iontronic pumps - "GemIPs" - equipped with a custom-synthesized ion exchange membrane (IEM) to treat a GBM tumor in an avian embryonic in vivo system. We compare GemIP treatment effects with a topical metronomic treatment and observe that a remarkable growth inhibition was only achieved with steady dosing via GemIPs. Daily topical drug administration (at the maximum dosage that was not lethal for the embryonic host organism) did not decrease tumor sizes, while both treatment regimes caused S-phase cell cycle arrest and apoptosis. We hypothesize that the pharmacodynamic effects generate different intratumoral drug concentration profiles for each technique, which causes this difference in outcome. We created a digital model of the experiment, which proposes a fast decay in the local drug concentration for the topical daily treatment, but a long-lasting high local concentration of Gem close to the tumor area with GemIPs. Continuous chemotherapy with iontronic devices opens new possibilities in cancer treatment: the long-lasting and highly local dosing of clinically available, potent chemotherapeutics to greatly enhance treatment efficiency without systemic side-effects. SIGNIFICANCE STATEMENT: Iontronic pumps (GemIPs) provide continuous and localized administration of the chemotherapeutic gemcitabine (Gem) for treating glioblastoma in vivo. By generating high and constant drug concentrations near the vascularized growing tumor, GemIPs offer an efficient and less harmful alternative to systemic administration. Continuous GemIP dosing resulted in remarkable growth inhibition, superior to daily topical Gem application at higher doses. Our digital modelling shows the advantages of iontronic chemotherapy in overcoming limitations of burst release and transient concentration profiles, and providing precise control over dosing profiles and local distribution. This technology holds promise for future implants, could revolutionize treatment strategies, and offers a new platform for studying the influence of timing and dosing dependencies of already-established drugs in the fight against hard-to-treat tumors.

3.
IEEE Trans Biomed Eng ; 71(6): 1980-1992, 2024 Jun.
Article En | MEDLINE | ID: mdl-38498749

OBJECTIVE: This study aims to explore the potential of organic electrolytic photocapacitors (OEPCs), an innovative photovoltaic device, in mediating the activation of native voltage-gated Cav1.2 channels (ICa,L) in Guinea pig ventricular cardiomyocytes. METHODS: Whole-cell patch-clamp recordings were employed to examine light-triggered OEPC mediated ICa,L activation, integrating the channel's kinetic properties into a multicompartment cell model to take intracellular ion concentrations into account. A multidomain model was additionally incorporated to evaluate effects of OEPC-mediated stimulation. The final model combines external stimulation, multicompartmental cell simulation, and a patch-clamp amplifier equivalent circuit to assess the impact on achievable intracellular voltage changes. RESULTS: Light pulses activated ICa,L, with amplitudes similar to voltage-clamp activation and high sensitivity to the L-type Ca2+ channel blocker, nifedipine. Light-triggered ICa,L inactivation exhibited kinetic parameters comparable to voltage-induced inactivation. CONCLUSION: OEPC-mediated activation of ICa,L demonstrates their potential for nongenetic optical modulation of cellular physiology potentially paving the way for the development of innovative therapies in cardiovascular health. The integrated model proves the light-mediated activation of ICa,L and advances the understanding of the interplay between the patch-clamp amplifier and external stimulation devices. SIGNIFICANCE: Treating cardiac conduction disorders by minimal-invasive means without genetic modifications could advance therapeutic approaches increasing patients' quality of life compared with conventional methods employing electronic devices.


Calcium Channels, L-Type , Computer Simulation , Myocytes, Cardiac , Animals , Guinea Pigs , Myocytes, Cardiac/physiology , Calcium Channels, L-Type/metabolism , Patch-Clamp Techniques , Models, Cardiovascular , Action Potentials/physiology , Action Potentials/radiation effects , Light
4.
Trends Cell Biol ; 34(5): 352-354, 2024 May.
Article En | MEDLINE | ID: mdl-38494377

Calcium (Ca2+) plays a pivotal role in cellular signal transmission by triggering downstream signaling in response to an increase in the cytosolic Ca2+ concentration. Intracellular organelles serve as Ca2+ stores that induce differently shaped Ca2+ signals. We discuss a study by Yuan et al. that investigated the interplay between the lysosomal two-pore channel 2 (TPC2) and endoplasmic reticulum (ER)-localized inositol 1,4,5-trisphosphate receptors (IP3Rs).


Calcium Channels , Calcium Signaling , Inositol 1,4,5-Trisphosphate Receptors , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Humans , Animals , Calcium Channels/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Lysosomes/metabolism
5.
J Physiol ; 602(8): 1475-1507, 2024 Apr.
Article En | MEDLINE | ID: mdl-36651592

The family of stromal interaction molecules (STIM) includes two widely expressed single-pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER-luminal Ca2+ sensors. STIM proteins mainly function as one of the two essential components of the so-called Ca2+ release-activated Ca2+ (CRAC) channel. The second CRAC channel component is constituted by pore-forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca2+ store. Using their Ca2+ sensing capabilities, STIM proteins confer this Ca2+ content-dependent signal to Orai, thereby linking Ca2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease.

6.
Adv Sci (Weinh) ; 10(31): e2300473, 2023 11.
Article En | MEDLINE | ID: mdl-37661572

Recent advances in light-responsive materials enabled the development of devices that can wirelessly activate tissue with light. Here it is shown that solution-processed organic heterojunctions can stimulate the activity of primary neurons at low intensities of light via photochemical reactions. The p-type semiconducting polymer PDCBT and the n-type semiconducting small molecule ITIC (a non-fullerene acceptor) are coated on glass supports, forming a p-n junction with high photosensitivity. Patch clamp measurements show that low-intensity white light is converted into a cue that triggers action potentials in primary cortical neurons. The study shows that neat organic semiconducting p-n bilayers can exchange photogenerated charges with oxygen and other chemical compounds in cell culture conditions. Through several controlled experimental conditions, photo-capacitive, photo-thermal, and direct hydrogen peroxide effects on neural function are excluded, with photochemical delivery being the possible mechanism. The profound advantages of low-intensity photo-chemical intervention with neuron electrophysiology pave the way for developing wireless light-based therapy based on emerging organic semiconductors.


Neurons , Semiconductors , Stimulation, Chemical , Cell Culture Techniques , Polymers/chemistry
7.
Biomater Adv ; 146: 213287, 2023 Mar.
Article En | MEDLINE | ID: mdl-36669235

Magnesium (Mg)-based implants are promising candidates for orthopedic interventions, because of their biocompatibility, good mechanical features, and ability to degrade completely in the body, eliminating the need for an additional removal surgery. In the present study, we synthesized and investigated two Mg-based materials, ultrahigh-purity ZX00 (Mg-Zn-Ca; <0.5 wt% Zn and <0.5 wt% Ca, in wt%; Fe-content <1 ppm) and ultrahigh-purity Mg (XHP-Mg, >99.999 wt% Mg; Fe-content <1 ppm), in vitro and in vivo in juvenile healthy rats to clarify the effect of the alloying elements Zn and Ca on mechanical properties, microstructure, cytocompatibility and degradation rate. Potential differences in bone formation and bone in-growth were also assessed and compared with state-of-the-art non-degradable titanium (Ti)-implanted, sham-operated, and control (non-intervention) groups, using micro-computed tomography, histology and scanning electron microscopy. At 6 and 24 weeks after implantation, serum alkaline phosphatase (ALP), calcium (Ca), and Mg level were measured and bone marrow stromal cells (BMSCs) were isolated for real-time PCR analysis. Results show that ZX00 implants have smaller grain size and superior mechanical properties than XHP-Mg, and that both reveal good biocompatibility in cytocompatibilty tests. ZX00 homogenously degraded with an increased gas accumulation 12 and 24 weeks after implantation, whereas XHP-Mg exhibited higher gas accumulation already at 2 weeks. Serum ALP, Ca, and Mg levels were comparable among all groups and both Mg-based implants led to similar relative expression levels of Alp, Runx2, and Bmp-2 genes at weeks 6 and 24. Histologically, Mg-based implants are superior for new bone tissue formation and bone in-growth compared to Ti implants. Furthermore, by tracking the sequence of multicolor fluorochrome labels, we observed higher mineral apposition rate at week 2 in both Mg-based implants compared to the control groups. Our findings suggest that (i) ZX00 and XHP-Mg support bone formation and remodeling, (ii) both Mg-based implants are superior to Ti implants in terms of new bone tissue formation and osseointegration, and (iii) ZX00 is more favorable due to its lower degradation rate and moderate gas accumulation.


Magnesium , Zinc , Rats , Animals , Magnesium/pharmacology , X-Ray Microtomography , Zinc/pharmacology , Prostheses and Implants , Osseointegration , Calcium, Dietary/pharmacology
8.
Adv Mater Technol ; 7(9): 2101159, 2022 Sep.
Article En | MEDLINE | ID: mdl-37064760

Nongenetic optical control of neurons is a powerful technique to study and manipulate the function of the nervous system. This research has benchmarked the performance of organic electrolytic photocapacitor (OEPC) optoelectronic stimulators at the level of single mammalian cells: human embryonic kidney (HEK) cells with heterologously expressed voltage-gated K+ channels and hippocampal primary neurons. OEPCs act as extracellular stimulation electrodes driven by deep red light. The electrophysiological recordings show that millisecond light stimulation of OEPC shifts conductance-voltage plots of voltage-gated K+ channels by ≈30 mV. Models are described both for understanding the experimental findings at the level of K+ channel kinetics in HEK cells, as well as elucidating interpretation of membrane electrophysiology obtained during stimulation with an electrically floating extracellular photoelectrode. A time-dependent increase in voltage-gated channel conductivity in response to OEPC stimulation is demonstrated. These findings are then carried on to cultured primary hippocampal neurons. It is found that millisecond time-scale optical stimuli trigger repetitive action potentials in these neurons. The findings demonstrate that OEPC devices enable the manipulation of neuronal signaling activities with millisecond precision. OEPCs can therefore be integrated into novel in vitro electrophysiology protocols, and the findings can inspire in vivo applications.

9.
Cancers (Basel) ; 13(24)2021 Dec 17.
Article En | MEDLINE | ID: mdl-34944977

The interplay of SK3, a Ca2+ sensitive K+ ion channel, with Orai1, a Ca2+ ion channel, has been reported to increase cytosolic Ca2+ levels, thereby triggering proliferation of breast and colon cancer cells, although a molecular mechanism has remained elusive to date. We show in the current study, via heterologous protein expression, that Orai1 can enhance SK3 K+ currents, in addition to constitutively bound calmodulin (CaM). At low cytosolic Ca2+ levels that decrease SK3 K+ permeation, co-expressed Orai1 potentiates SK3 currents. This positive feedback mechanism of SK3 and Orai1 is enabled by their close co-localization. Remarkably, we discovered that loss of SK3 channel activity due to overexpressed CaM mutants could be restored by Orai1, likely via its interplay with the SK3-CaM binding site. Mapping for interaction sites within Orai1, we identified that the cytosolic strands and pore residues are critical for a functional communication with SK3. Moreover, STIM1 has a bimodal role in SK3-Orai1 regulation. Under physiological ionic conditions, STIM1 is able to impede SK3-Orai1 interplay by significantly decreasing their co-localization. Forced STIM1-Orai1 activity and associated Ca2+ influx promote SK3 K+ currents. The dynamic regulation of Orai1 to boost endogenous SK3 channels was also determined in the human prostate cancer cell line LNCaP.

10.
ACS Sens ; 6(11): 3994-4000, 2021 11 26.
Article En | MEDLINE | ID: mdl-34752056

Given the importance of ion gradients and fluxes in biology, monitoring ions locally at the exterior of the plasma membrane of intact cells in a noninvasive manner is highly desirable but challenging. Classical targeting of genetically encoded biosensors at the exterior of cell surfaces would be a suitable approach; however, it often leads to intracellular accumulation of the tools in vesicular structures and adverse modifications, possibly impairing sensor functionality. To tackle these issues, we generated recombinant fluorescent ion biosensors fused to traptavidin (TAv) specifically coupled to a biotinylated AviTag expressed on the outer cell surface of cells. We show that purified chimeras of TAv and pH-Lemon or GEPII 1.0, Förster resonance energy transfer-based pH and K+ biosensors, can be immobilized directly and specifically on biotinylated surfaces including glass platelets and intact cells, thereby remaining fully functional for imaging of ion dynamics. The immobilization of recombinant TAv-GEPII 1.0 on the extracellular cell surface of primary cortical rat neurons allowed imaging of excitotoxic glutamate-induced K+ efflux in vitro. We also performed micropatterning of purified TAv biosensors using a microperfusion system to generate spatially separated TAv-pH-Lemon and TAv-GEPII 1.0 spots for simultaneous pH and K+ measurements on cell surfaces. Our results suggest that the approach can be greatly expanded by immobilizing various biosensors on extracellular surfaces to quantitatively visualize microenvironmental transport and signaling processes in different cell culture models and other experimental settings.


Biosensing Techniques , Fluorescence Resonance Energy Transfer , Animals , Cell Membrane , Diagnostic Imaging , Ions , Rats
11.
Adv Mater Technol ; 6(5): 2001302, 2021 May.
Article En | MEDLINE | ID: mdl-34195355

Successful treatment of glioblastoma multiforme (GBM), the most lethal tumor of the brain, is presently hampered by (i) the limits of safe surgical resection and (ii) "shielding" of residual tumor cells from promising chemotherapeutic drugs such as Gemcitabine (Gem) by the blood brain barrier (BBB). Here, the vastly greater GBM cell-killing potency of Gem compared to the gold standard temozolomide is confirmed, moreover, it shows neuronal cells to be at least 104-fold less sensitive to Gem than GBM cells. The study also demonstrates the potential of an electronically-driven organic ion pump ("GemIP") to achieve controlled, targeted Gem delivery to GBM cells. Thus, GemIP-mediated Gem delivery is confirmed to be temporally and electrically controllable with pmol min-1 precision and electric addressing is linked to the efficient killing of GBM cell monolayers. Most strikingly, GemIP-mediated GEM delivery leads to the overt disintegration of targeted GBM tumor spheroids. Electrically-driven chemotherapy, here exemplified, has the potential to radically improve the efficacy of GBM adjuvant chemotherapy by enabling exquisitely-targeted and controllable delivery of drugs irrespective of whether these can cross the BBB.

13.
iScience ; 24(4): 102346, 2021 Apr 23.
Article En | MEDLINE | ID: mdl-33870140

High expression levels of mitochondria-associated hexokinase-II (HKII) represent a hallmark of metabolically highly active cells such as fast proliferating cancer cells. Typically, the enzyme provides a crucial metabolic switch towards aerobic glycolysis. By imaging metabolic activities on the single-cell level with genetically encoded fluorescent biosensors, we here demonstrate that HKII activity requires intracellular K+. The K+ dependency of glycolysis in cells expressing HKII was confirmed in cell populations using extracellular flux analysis and nuclear magnetic resonance-based metabolomics. Reductions of intracellular K+ by gramicidin acutely disrupted HKII-dependent glycolysis and triggered energy stress pathways, while K+ re-addition promptly restored glycolysis-dependent adenosine-5'-triphosphate generation. Moreover, expression and activation of KV1.3, a voltage-gated K+ channel, lowered cellular K+ content and the glycolytic activity of HEK293 cells. Our findings unveil K+ as an essential cofactor of HKII and provide a mechanistic link between activities of distinct K+ channels and cell metabolism.

14.
J Biol Chem ; 296: 100224, 2021.
Article En | MEDLINE | ID: mdl-33361160

The initial activation step in the gating of ubiquitously expressed Orai1 calcium (Ca2+) ion channels represents the activation of the Ca2+-sensor protein STIM1 upon Ca2+ store depletion of the endoplasmic reticulum. Previous studies using constitutively active Orai1 mutants gave rise to, but did not directly test, the hypothesis that STIM1-mediated Orai1 pore opening is accompanied by a global conformational change of all Orai transmembrane domain (TM) helices within the channel complex. We prove that a local conformational change spreads omnidirectionally within the Orai1 complex. Our results demonstrate that these locally induced global, opening-permissive TM motions are indispensable for pore opening and require clearance of a series of Orai1 gating checkpoints. We discovered these gating checkpoints in the middle and cytosolic extended TM domain regions. Our findings are based on a library of double point mutants that contain each one loss-of-function with one gain-of-function point mutation in a series of possible combinations. We demonstrated that an array of loss-of-function mutations are dominant over most gain-of-function mutations within the same as well as of an adjacent Orai subunit. We further identified inter- and intramolecular salt-bridge interactions of Orai subunits as a core element of an opening-permissive Orai channel architecture. Collectively, clearance and synergistic action of all these gating checkpoints are required to allow STIM1 coupling and Orai1 pore opening. Our results unravel novel insights in the preconditions of the unique fingerprint of CRAC channel activation, provide a valuable source for future structural resolutions, and help to understand the molecular basis of disease-causing mutations.


Calcium Signaling , Calcium/metabolism , Ion Channel Gating/genetics , Neoplasm Proteins/chemistry , ORAI1 Protein/chemistry , Stromal Interaction Molecule 1/chemistry , Amino Acid Substitution , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Gene Expression Regulation , Genes, Reporter , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Liposomes/chemistry , Liposomes/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Molecular Dynamics Simulation , Mutation , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Patch-Clamp Techniques , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism
15.
Cell Calcium ; 93: 102323, 2021 01.
Article En | MEDLINE | ID: mdl-33316586

The store-operated calcium channels Orai1-3 form extraordinary long and funnel like pores, in stark contrast to a classical pore loop architecture. A hydrophobic segment centrally located in the Orai pore controls gating. Here, we comment on a recent work that describes decisive binding between three residues that controls the open and closed conformation of Orai channels.


Calcium Channels , Ion Channel Gating , Calcium Channels/metabolism , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/metabolism , Sulfur
16.
Cell Rep ; 33(3): 108292, 2020 10 20.
Article En | MEDLINE | ID: mdl-33086068

Store-operated calcium entry (SOCE) through STIM-gated ORAI channels governs vital cellular functions. In this context, SOCE controls cellular redox signaling and is itself regulated by redox modifications. However, the molecular mechanisms underlying this calcium-redox interplay and the functional outcomes are not fully understood. Here, we examine the role of STIM2 in SOCE redox regulation. Redox proteomics identify cysteine 313 as the main redox sensor of STIM2 in vitro and in vivo. Oxidative stress suppresses SOCE and calcium currents in cells overexpressing STIM2 and ORAI1, an effect that is abolished by mutation of cysteine 313. FLIM and FRET microscopy, together with MD simulations, indicate that oxidative modifications of cysteine 313 alter STIM2 activation dynamics and thereby hinder STIM2-mediated gating of ORAI1. In summary, this study establishes STIM2-controlled redox regulation of SOCE as a mechanism that affects several calcium-regulated physiological processes, as well as stress-induced pathologies.


Calcium/metabolism , Stromal Interaction Molecule 2/metabolism , Calcium Channels/metabolism , Calcium Signaling , Cell Line, Tumor , Cysteine/metabolism , Humans , Intracellular Calcium-Sensing Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , ORAI1 Protein/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 2/genetics , Stromal Interaction Molecule 2/physiology
17.
Cancers (Basel) ; 12(10)2020 Oct 06.
Article En | MEDLINE | ID: mdl-33036292

The Ca2+ sensor STIM1 and the Ca2+ channel Orai1 that form the store-operated Ca2+ (SOC) channel complex are key targets for drug development. Selective SOC inhibitors are currently undergoing clinical evaluation for the treatment of auto-immune and inflammatory responses and are also deemed promising anti-neoplastic agents since SOC channels are linked with enhanced cancer cell progression. Here, we describe an investigation of the site of binding of the selective inhibitor Synta66 to the SOC channel Orai1 using docking and molecular dynamics simulations, and live cell recordings. Synta66 binding was localized to the extracellular site close to the transmembrane (TM)1 and TM3 helices and the extracellular loop segments, which, importantly, are adjacent to the Orai1-selectivity filter. Synta66-sensitivity of the Orai1 pore was, in fact, diminished by both Orai1 mutations affecting Ca2+ selectivity and permeation of Na+ in the absence of Ca2+. Synta66 also efficiently blocked SOC in three glioblastoma cell lines but failed to interfere with cell viability, division and migration. These experiments provide new structural and functional insights into selective drug inhibition of the Orai1 Ca2+ channel by a high-affinity pore blocker.

18.
Stud Health Technol Inform ; 271: 9-16, 2020 Jun 23.
Article En | MEDLINE | ID: mdl-32578535

Optoelectronic neurostimulation is a promising, minimally invasive treatment modality for neuronal damage, in particular for patients with traumatic brain injury. In this work, a newly developed optoelectronic device, a so-called photocap, based on light-activated organic semiconductor structures with high spatial and temporal resolution is investigated. To prove and verify the feasibility of this new technology, a mathematical model was developed, simulating the electrical response of excitable cells to photocap stimulation. In the first step, a comprehensive technical review of the device concept was performed, building the basis for setting up the simulation model. The simulations demonstrate that photocaps may serve as a stimulation device, triggering action potentials in neural or cardiac cells. Our first results show that the model serves as a perfect tool for evaluating and further developing this new technology, showing high potential for introducing new and innovative therapy methods in the field of optoelectronic cell stimulation.


Neurons , Semiconductors , Action Potentials , Humans , Models, Theoretical
19.
Int J Mol Sci ; 21(12)2020 Jun 21.
Article En | MEDLINE | ID: mdl-32575830

Stromal interaction molecule 1 (STIM1) is a ubiquitously expressed Ca2+ sensor protein that induces permeation of Orai Ca2+ channels upon endoplasmic reticulum Ca2+-store depletion. A drop in luminal Ca2+ causes partial unfolding of the N-terminal STIM1 domains and thus initial STIM1 activation. We compared the STIM1 structure upon Ca2+ depletion from our molecular dynamics (MD) simulations with a recent 2D NMR structure. Simulation- and structure-based results showed unfolding of two α-helices in the canonical and in the non-canonical EF-hand. Further, we structurally and functionally evaluated mutations in the non-canonical EF-hand that have been shown to cause tubular aggregate myopathy. We found these mutations to cause full constitutive activation of Ca2+-release-activated Ca2+ currents (ICRAC) and to promote autophagic processes. Specifically, heterologously expressed STIM1 mutations in the non-canonical EF-hand promoted translocation of the autophagy transcription factors microphthalmia-associated transcription factor (MITF) and transcription factor EB (TFEB) into the nucleus. These STIM1 mutations additionally stimulated an enhanced production of autophagosomes. In summary, mutations in STIM1 that cause structural unfolding promoted Ca2+ down-stream activation of autophagic processes.


Autophagy , Myopathies, Structural, Congenital/genetics , Neoplasm Proteins/genetics , Stromal Interaction Molecule 1/genetics , Calcium/metabolism , Cations, Divalent/metabolism , EF Hand Motifs , Humans , Molecular Dynamics Simulation , Mutation , Myopathies, Structural, Congenital/metabolism , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Protein Conformation, alpha-Helical , Protein Unfolding , Stromal Interaction Molecule 1/chemistry , Stromal Interaction Molecule 1/metabolism
20.
Cells ; 9(3)2020 02 27.
Article En | MEDLINE | ID: mdl-32120825

Canonical transient receptor potential (TRPC) channels were identified as key players in maladaptive remodeling, with nuclear factor of activated T-cells (NFAT) transcription factors serving as downstream targets of TRPC-triggered Ca2+ entry in these pathological processes. Strikingly, the reconstitution of TRPC-NFAT signaling by heterologous expression yielded controversial results. Specifically, nuclear translocation of NFAT1 was found barely responsive to recombinant TRPC3, presumably based on the requirement of certain spatiotemporal signaling features. Here, we report efficient control of NFAT1 nuclear translocation in human embryonic kidney 293 (HEK293) cells by light, using a new photochromic TRPC benzimidazole activator (OptoBI-1) and a TRPC3 mutant with modified activator sensitivity. NFAT1 nuclear translocation was measured along with an all-optical protocol to record local and global Ca2+ pattern generated during light-mediated activation/deactivation cycling of TRPC3. Our results unveil the ability of wild-type TRPC3 to produce constitutive NFAT nuclear translocation. Moreover, we demonstrate that TRPC3 mutant that lacks basal activity enables spatiotemporally precise control over NFAT1 activity by photopharmacology. Our results suggest tight linkage between TRPC3 activity and NFAT1 nuclear translocation based on global cellular Ca2+ signals.


Light , NFATC Transcription Factors/metabolism , Signal Transduction , TRPC Cation Channels/metabolism , Calcium Signaling , Cell Nucleus/metabolism , HEK293 Cells , Humans , Isomerism , Optogenetics , Protein Transport , Signal Transduction/radiation effects , Time Factors
...