Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 73
1.
Development ; 151(11)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38785133

The RNA-binding protein cytoplasmic polyadenylation element binding 1 (CPEB1) plays a fundamental role in regulating mRNA translation in oocytes. However, the specifics of how and which protein kinase cascades modulate CPEB1 activity are still controversial. Using genetic and pharmacological tools, and detailed time courses, we have re-evaluated the relationship between CPEB1 phosphorylation and translation activation during mouse oocyte maturation. We show that both the CDK1/MAPK and AURKA/PLK1 pathways converge on CPEB1 phosphorylation during prometaphase of meiosis I. Only inactivation of the CDK1/MAPK pathway disrupts translation, whereas inactivation of either pathway alone leads to CPEB1 stabilization. However, CPEB1 stabilization induced by inactivation of the AURKA/PLK1 pathway does not affect translation, indicating that destabilization and/or degradation is not linked to translational activation. The accumulation of endogenous CCNB1 protein closely recapitulates the translation data that use an exogenous template. These findings support the overarching hypothesis that the activation of translation during prometaphase in mouse oocytes relies on a CDK1/MAPK-dependent CPEB1 phosphorylation, and that translational activation precedes CPEB1 destabilization.


Meiosis , Oocytes , Protein Biosynthesis , mRNA Cleavage and Polyadenylation Factors , Animals , Oocytes/metabolism , Oocytes/cytology , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , Phosphorylation , Mice , Female , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Aurora Kinase A/metabolism , Aurora Kinase A/genetics , Cyclin B1/metabolism , Cyclin B1/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Signal Transduction
2.
bioRxiv ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38798495

The human genome contains 24 gag -like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the gag -like genes PNMA1 and PNMA4 support reproductive capacity. Six-week-old mice lacking either Pnma1 or Pnma4 are indistinguishable from wild-type littermates, but by six months the mutant mice become prematurely subfertile, with precipitous drops in sex hormone levels, gonadal atrophy, and abdominal obesity; overall they produce markedly fewer offspring than controls. Analysis of donated human ovaries shows that expression of both genes declines normally with aging, while several PNMA1 and PNMA4 variants identified in genome-wide association studies are causally associated with low testosterone, altered puberty onset, or obesity. These findings expand our understanding of factors that maintain human reproductive health and lend insight into the domestication of retrotransposon-derived genes.

3.
bioRxiv ; 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38659852

Alternative mRNA splicing can generate distinct protein isoforms to allow for the differential control of cell processes across cell types. However, alternative splice isoforms that differentially modulate distinct cell division programs have remained elusive. Here, we demonstrate that mammalian germ cells express an alternate mRNA splice isoform for the kinetochore component, DSN1, a subunit of the MIS12 complex that links the centromeres to spindle microtubules during chromosome segregation. This germline DSN1 isoform bypasses the requirement for Aurora kinase phosphorylation for its centromere localization due to the absence of a key regulatory region allowing DSN1 to display persistent centromere localization. Expression of the germline DSN1 isoform in somatic cells results in constitutive kinetochore localization, chromosome segregation errors, and growth defects, providing an explanation for its tight cell type-specific expression. Reciprocally, precisely eliminating expression of the germline DSN1 splice isoform in mouse models disrupts oocyte maturation and early embryonic divisions coupled with a reduction in fertility. Together, this work identifies a germline-specific splice isoform for a chromosome segregation component and implicates its role in mammalian fertility.

5.
J Assist Reprod Genet ; 41(5): 1341-1356, 2024 May.
Article En | MEDLINE | ID: mdl-38436798

PURPOSE/STUDY QUESTION: Does piercing oocyte membranes during ICSI allow the influx of surrounding zwitterionic buffer into human oocytes and result in altered developmental competence? METHODS: Human oocytes directed to IRB-approved research were used to determine the unrestricted influx of surrounding buffer into the oocyte after piercing of membranes via confocal fluorescence microscopy (n = 80 human MII oocytes) and the influence of the select buffer influx of HEPES, MOPS, and bicarbonate buffer on the oocyte transcriptome using ultra-low input RNA sequencing (n = 40 human MII oocytes). RESULTS: Piercing membranes of human MII oocytes during sham-ICSI resulted in the unrestricted influx of surrounding culture buffer into the oocyte that was beyond technician control. Transcriptome analysis revealed statistically significant decreased cytoskeletal transcripts in the pierced buffer cohorts, higher levels of embryo competency transcripts (IGF2 and G6PD) in the bicarbonate buffer cohort, higher levels of stress-induced transcriptional repressor transcripts (MAF1) in the HEPES and MOPS cohorts, and decreased levels of numerous chromosomal maintenance transcripts (SMC3) in the HEPES buffer cohort. The HEPES buffer cohort also revealed higher levels of transcripts suggesting increased oxidative (GPX1) and lysosomal stress (LAMP1). CONCLUSION: The influence of zwitterionic buffer on intrinsic cellular mechanisms provides numerous concerns for their use in IVF clinical applications. The primary concern is the ICSI procedure, in which the surrounding buffer is allowed influx into the oocytes after membrane piercing. Selecting a physiological bicarbonate buffer may reduce imposed stress on oocytes, resulting in improved embryo development and clinical results because intracellular MOPS, and especially HEPES, may negatively impact intrinsic biological mechanisms, as revealed by transcriptome changes. These findings further support the utilization of bicarbonate buffer as the oocyte-holding medium during ICSI.


Oocytes , Sperm Injections, Intracytoplasmic , Transcriptome , Humans , Sperm Injections, Intracytoplasmic/methods , Oocytes/metabolism , Oocytes/growth & development , Female , Transcriptome/genetics , Buffers , Adult , HEPES , Male , Embryonic Development/genetics , Fertilization in Vitro/methods
6.
Sci Rep ; 14(1): 3602, 2024 02 13.
Article En | MEDLINE | ID: mdl-38351116

Reproductive success requires the development of viable oocytes and the accurate segregation of chromosomes during meiosis. Failure to segregate chromosomes properly can lead to infertility, miscarriages, or developmental disorders. A variety of factors contribute to accurate chromosome segregation and oocyte development, such as spindle assembly and sister chromatid cohesion. However, many proteins required for meiosis remain unknown. In this study, we aimed to develop a screening pipeline for identifying novel meiotic and fertility genes using the genome of Drosophila melanogaster. To accomplish this goal, genes upregulated within meiotically active tissues were identified. More than 240 genes with no known function were silenced using RNA interference (RNAi) and the effects on meiosis and fertility were assessed. We identified 94 genes that when silenced caused infertility and/or high levels of chromosomal nondisjunction. The vast majority of these genes have human and mouse homologs that are also poorly studied. Through this screening process, we identified novel genes that are crucial for meiosis and oocyte development but have not been extensively studied in human or model organisms. Understanding the function of these genes will be an important step towards the understanding of their biological significance during reproduction.


Drosophila Proteins , Infertility , Humans , Animals , Mice , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Transcriptome , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Meiosis/genetics , Chromosome Segregation , Fertility/genetics , Infertility/metabolism , Oocytes/metabolism
7.
bioRxiv ; 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38293116

The RNA-binding protein cytoplasmic polyadenylation element binding 1 (CPEB1) plays a fundamental role in the regulation of mRNA translation in oocytes. However, the nature of protein kinase cascades modulating the activity of CPEB1 is still a matter of controversy. Using genetic and pharmacological tools and detailed time courses, here we have reevaluated the relationship between CPEB1 phosphorylation and the activation of translation during mouse oocyte maturation. We show that both the CDK1/MAPK and AURKA/PLK1 pathways converge on the phosphorylation of CPEB1 during prometaphase. Only inactivation of the CDK1/MAPK pathway disrupts translation, while inactivation of either pathway leads to CPEB1 stabilization. However, stabilization of CPEB1 induced by inactivation of the AURKA/PLK1 does not affect translation, indicating that destabilization/degradation can be dissociated from translational activation. The accumulation of the endogenous CCNB1 protein closely recapitulates the translation data. These findings support the overarching hypothesis that the activation of translation in prometaphase in mouse oocytes relies on a CDK1-dependent CPEB1 phosphorylation, and this translational activation precedes CPEB1 destabilization.

8.
Nat Commun ; 14(1): 7419, 2023 11 16.
Article En | MEDLINE | ID: mdl-37973997

Embryo development depends upon maternally derived materials. Mammalian oocytes undergo extreme asymmetric cytokinesis events, producing one large egg and two small polar bodies. During cytokinesis in somatic cells, the midbody and subsequent assembly of the midbody remnant, a signaling organelle containing RNAs, transcription factors and translation machinery, is thought to influence cellular function or fate. The role of the midbody and midbody remnant in gametes, in particular, oocytes, remains unclear. Here, we examined the formation and function of meiotic midbodies (mMB) and mMB remnants using mouse oocytes and demonstrate that mMBs have a specialized cap structure that is orientated toward polar bodies. We show that that mMBs are translationally active, and that mMB caps are required to retain nascent proteins in eggs. We propose that this specialized mMB cap maintains genetic factors in eggs allowing for full developmental competency.


Meiosis , Oocytes , Animals , Mice , Oocytes/metabolism , Cytokinesis/genetics , Polar Bodies , Embryonic Development/genetics , Mammals
9.
Am J Hum Genet ; 110(12): 2092-2102, 2023 Dec 07.
Article En | MEDLINE | ID: mdl-38029743

Aneuploidy frequently arises during human meiosis and is the primary cause of early miscarriage and in vitro fertilization (IVF) failure. Individuals undergoing IVF exhibit significant variability in aneuploidy rates, although the exact genetic causes of the variability in aneuploid egg production remain unclear. Preimplantation genetic testing for aneuploidy (PGT-A) using next-generation sequencing is a standard test for identifying and selecting IVF-derived euploid embryos. The wealth of embryo aneuploidy data and ultra-low coverage whole-genome sequencing (ulc-WGS) data from PGT-A have the potential to discover variants in parental genomes that are associated with aneuploidy risk in their embryos. Using ulc-WGS data from ∼10,000 PGT-A biopsies, we imputed genotype likelihoods of genetic variants in embryo genomes. We then used the imputed variants and embryo aneuploidy calls to perform a genome-wide association study of aneuploidy incidence. Finally, we carried out functional evaluation of the identified candidate gene in a mouse oocyte system. We identified one locus on chromosome 3 that is significantly associated with meiotic aneuploidy risk. One candidate gene, CCDC66, encompassed by this locus, is involved in chromosome segregation during meiosis. Using mouse oocytes, we showed that CCDC66 regulates meiotic progression and chromosome segregation fidelity, especially in older mice. Our work extended the research utility of PGT-A ulc-WGS data by allowing robust association testing and improved the understanding of the genetic contribution to maternal meiotic aneuploidy risk. Importantly, we introduce a generalizable method that has potential to be leveraged for similar association studies that use ulc-WGS data.


Preimplantation Diagnosis , Pregnancy , Female , Humans , Animals , Mice , Preimplantation Diagnosis/methods , Genome-Wide Association Study , Genetic Testing/methods , Fertilization in Vitro , Aneuploidy , Blastocyst , Eye Proteins
10.
Res Sq ; 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37886573

Embryo development depends upon maternally derived materials. Mammalian oocytes undergo extreme asymmetric cytokinesis events, producing one large egg and two small polar bodies (PB). During cytokinesis in somatic cells, the midbody (MB) and subsequent assembly of the midbody remnant (MBR), a signaling organelle containing RNAs, transcription factors and translation machinery, is thought to influence cellular function or fate. The role of the MB and MBR in gametes, in particular, oocytes, remains unclear. Here, we examined the formation and function of meiotic MBs (mMB) and mMB remnants (mMBRs) using mouse oocytes and demonstrate that mMBs have a specialized meiotic mMB cap structure that is orientated toward PBs. We show that that mMBs are translationally active, and that mMB caps are required to retain nascent proteins in eggs. We propose that this specialized mMB cap maintains genetic factors in eggs allowing for full developmental competency.

11.
Development ; 150(17)2023 09 01.
Article En | MEDLINE | ID: mdl-37676777

Meiotically competent oocytes in mammals undergo cyclic development during folliculogenesis. Oocytes within ovarian follicles are transcriptionally active, producing and storing transcripts required for oocyte growth, somatic cell communication and early embryogenesis. Transcription ceases as oocytes transition from growth to maturation and does not resume until zygotic genome activation. Although SUMOylation, a post-translational modification, plays multifaceted roles in transcriptional regulation, its involvement during oocyte development remains poorly understood. In this study, we generated an oocyte-specific knockout of Ube2i, encoding the SUMO E2 enzyme UBE2I, using Zp3-cre+ to determine how loss of oocyte SUMOylation during folliculogenesis affects oocyte development. Ube2i Zp3-cre+ female knockout mice were sterile, with oocyte defects in meiotic competence, spindle architecture and chromosome alignment, and a premature arrest in metaphase I. Additionally, fully grown Ube2i Zp3-cre+ oocytes exhibited sustained transcriptional activity but downregulated maternal effect genes and prematurely activated genes and retrotransposons typically associated with zygotic genome activation. These findings demonstrate that UBE2I is required for the acquisition of key hallmarks of oocyte development during folliculogenesis, and highlight UBE2I as a previously unreported orchestrator of transcriptional regulation in mouse oocytes.


Chromatin Assembly and Disassembly , Sumoylation , Female , Animals , Mice , Chromatin Assembly and Disassembly/genetics , Oocytes , Ovarian Follicle , Zygote , Mammals
12.
medRxiv ; 2023 Jul 24.
Article En | MEDLINE | ID: mdl-37546814

Background: Aneuploidy, the state of a cell containing extra or missing chromosomes, frequently arises during human meiosis and is the primary cause of early miscarriage and maternal age-related in vitro fertilization (IVF) failure. IVF patients exhibit significant variability in aneuploidy rates, although the exact genetic causes of the variability in aneuploid egg production remain unclear. Preimplantation genetic testing for aneuploidy (PGT-A) using ultra-low coverage whole-genome sequencing (ulc-WGS) is a standard test for identifying and selecting IVF-derived embryos with a normal chromosome complement. The wealth of embryo aneuploidy data and ulc-WGS data from PGT-A has potential for discovering variants in paternal genomes that are associated with aneuploidy risk in their embryos. Methods: Using ulc-WGS data from ∼10,000 PGT-A biopsies, we imputed genotype likelihoods of genetic variants in parental genomes. We then used the imputed variants and aneuploidy calls from the embryos to perform a genome-wide association study of aneuploidy incidence. Finally, we carried out functional evaluation of the identified candidate gene in a mouse oocyte system. Results: We identified one locus on chromosome 3 that is significantly associated with maternal meiotic aneuploidy risk. One candidate gene, CCDC66, encompassed by this locus, is involved in chromosome segregation during meiosis. Using mouse oocytes, we showed that CCDC66 regulates meiotic progression and chromosome segregation fidelity, especially in older mice. Conclusions: Our work extended the research utility of PGT-A ulc-WGS data by allowing robust association testing and improved the understanding of the genetic contribution to maternal meiotic aneuploidy risk. Importantly, we introduce a generalizable method that can be leveraged for similar association studies using ulc-WGS data.

13.
Development ; 150(14)2023 07 15.
Article En | MEDLINE | ID: mdl-37350382

Retinoic acid (RA) is the proposed mammalian 'meiosis inducing substance'. However, evidence for this role comes from studies in the fetal ovary, where germ cell differentiation and meiotic initiation are temporally inseparable. In the postnatal testis, these events are separated by more than 1 week. Exploiting this difference, we discovered that, although RA is required for spermatogonial differentiation, it is dispensable for the subsequent initiation, progression and completion of meiosis. Indeed, in the absence of RA, the meiotic transcriptome program in both differentiating spermatogonia and spermatocytes entering meiosis was largely unaffected. Instead, transcripts encoding factors required during spermiogenesis were aberrant during preleptonema, and the subsequent spermatid morphogenesis program was disrupted such that no sperm were produced. Taken together, these data reveal a RA-independent model for male meiotic initiation.


Testis , Tretinoin , Animals , Female , Male , Tretinoin/pharmacology , Spermatogenesis/genetics , Spermatogonia , Spermatozoa , Meiosis/genetics , Mammals
15.
Mol Biol Cell ; 34(5): ar43, 2023 05 01.
Article En | MEDLINE | ID: mdl-36920098

Proper chromosome segregation depends on the establishment of bioriented kinetochore-microtubule attachments, which often requires multiple rounds of release and reattachment. Aurora B and C kinases phosphorylate kinetochore proteins to release tensionless attachments. Multiple pathways recruit Aurora B/C to the centromere and kinetochore. We studied how these pathways contribute to anaphase onset timing and correction of kinetochore-microtubule attachments in budding yeast meiosis and mitosis. We find that the pool localized by the Bub1/Bub3 pathway sets the normal duration of meiosis and mitosis, in differing ways. Our meiosis data suggests a model that disruption of this pathway leads to PP1 kinetochore localization, which dephosphorylates Cdc20 for premature anaphase onset. For error correction, the Bub1/Bub3 and COMA pathways are individually important in meiosis but compensatory in mitosis. Finally, we find that the haspin and Bub1/3 pathways function together to ensure error correction in mouse oogenesis. Our results suggest that each recruitment pathway localizes spatially distinct kinetochore-localized Aurora B/C pools that function differently between meiosis and mitosis.


Chromosome Segregation , Kinetochores , Animals , Mice , Kinetochores/metabolism , Centromere/metabolism , Cell Cycle Proteins/metabolism , Mitosis
16.
bioRxiv ; 2023 Feb 05.
Article En | MEDLINE | ID: mdl-36778459

Proper chromosome segregation depends on establishment of bioriented kinetochore-microtubule attachments, which often requires multiple rounds of release and reattachment. Aurora B and C kinases phosphorylate kinetochore proteins to release tensionless attachments. Multiple pathways recruit Aurora B/C to the centromere and kinetochore. We studied how these pathways contribute to anaphase onset timing and correction of kinetochore-microtubule attachments in budding yeast meiosis and mitosis. We find that the pool localized by the Bub1/Bub3 pathway sets the normal duration of meiosis and mitosis, in differing ways. Our meiosis data suggests that disruption of this pathway leads to PP1 kinetochore localization, which dephosphorylates Cdc20 for premature anaphase onset. For error correction, the Bub1/Bub3 and COMA pathways are individually important in meiosis but compensatory in mitosis. Finally, we find that the haspin and Bub1/3 pathways function together to ensure error correction in mouse oogenesis. Our results suggest that each recruitment pathway localizes spatially distinct kinetochore-localized Aurora B/C pools that function differently between meiosis and mitosis.

17.
J Vis Exp ; (187)2022 09 13.
Article En | MEDLINE | ID: mdl-36190266

Aneuploidy is the leading genetic abnormality causing early miscarriage and pregnancy failure in humans. Most errors in chromosome segregation that give rise to aneuploidy occur during meiosis in oocytes, but why oocyte meiosis is error-prone is still not fully understood. During cell division, cells prevent errors in chromosome segregation by activating the spindle assembly checkpoint (SAC). This control mechanism relies on detecting kinetochore (KT)-microtubule (MT) attachments and sensing tension generated by spindle fibers. When KTs are unattached, the SAC is activated and prevents cell-cycle progression. The SAC is activated first by MPS1 kinase, which triggers the recruitment and formation of the mitotic checkpoint complex (MCC), composed of MAD1, MAD2, BUB3, and BUBR1. Then, the MCC diffuses into the cytoplasm and sequesters CDC20, an anaphase-promoting complex/cyclosome (APC/C) activator. Once KTs become attached to microtubules and chromosomes are aligned at the metaphase plate, the SAC is silenced, CDC20 is released, and the APC/C is activated, triggering the degradation of Cyclin B and Securin, thereby allowing anaphase onset. Compared to somatic cells, the SAC in oocytes is not as effective because cells can undergo anaphase despite having unattached KTs. Understanding why the SAC is more permissive and if this permissiveness is one of the causes of chromosome segregation errors in oocytes still needs further investigation. The present protocol describes the three techniques to comprehensively evaluate SAC integrity in mouse oocytes. These techniques include using nocodazole to depolymerize MTs to evaluate the SAC response, tracking SAC silencing by following the kinetics of Securin destruction, and evaluating the recruitment of MAD2 to KTs by immunofluorescence. Together these techniques probe mechanisms needed to produce healthy eggs by providing a complete evaluation of SAC integrity.


M Phase Cell Cycle Checkpoints , Spindle Apparatus , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Aneuploidy , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Kinetochores/metabolism , Mice , Nocodazole , Oocytes , Securin/genetics , Securin/metabolism , Spindle Apparatus/metabolism
18.
Reproduction ; 164(4): V5-V7, 2022 10 01.
Article En | MEDLINE | ID: mdl-36125382

In brief: The Aurora protein kinases have critical functions in controlling oocyte meiotic maturation. In this study, we describe an assay for examining their activation state in oocytes and establish the best working doses of three commonly used inhibitors. Abstract: Several small molecule inhibitors exist for targeting Aurora kinase proteins in somatic cells. From this point of view, we evaluate the specificity of these inhibitors in mouse oocytes, and we demonstrate that MLN 8237 and AZD 1152 are specific for Aurora kinase A and Aurora kinase C, respectively, only when used at low concentrations.


Aurora Kinase A , Meiosis , Animals , Aurora Kinase A/metabolism , Aurora Kinase C/metabolism , Mice , Oocytes/metabolism , Protein Kinases/metabolism
19.
BMC Res Notes ; 15(1): 96, 2022 Mar 07.
Article En | MEDLINE | ID: mdl-35255953

OBJECTIVE: Miscarriages affect 10% of women aged 25-29, and 53% of women over 45. The primary cause of miscarriage is aneuploidy that originated in eggs. The Aurora kinase family has three members that regulate chromosome segregation. Therefore, distinguishing the roles of these isoforms is important to understand aneuploidy etiology. In meiosis, Aurora kinase A (AURKA) localizes to spindle poles, where it binds TPX2. Aurora kinase C (AURKC) localizes on chromosomes, where it replaces AURKB as the primary AURK in the chromosomal passenger complex (CPC) via INCENP binding. Although AURKA compensates for CPC function in oocytes lacking AURKB/C, it is unknown whether AURKA binds INCENP in wild type mouse oocytes. ZINC08918027 (ZC) is an inhibitor that prevents the interaction between AURKB and INCENP in mitotic cells. We hypothesized that ZC would block CPC function of any AURK isoform. RESULTS: ZC treatment caused defects in meiotic progression and spindle building. By Western blotting and immunofluorescence, we observed that activated AURKA and AURKC levels in ZC-treated oocytes decreased compared to controls. These results suggest there is a population of AURKA-CPC in mouse oocytes. These data together suggest that INCENP-dependent AURKA and AURKC activities are needed for spindle bipolarity and meiotic progression.


Meiosis , Oocytes , Animals , Aurora Kinase B/genetics , Aurora Kinase B/metabolism , Chromosome Segregation , Female , Mice , Oocytes/metabolism , Protein Isoforms/genetics , Spindle Apparatus/metabolism
20.
Hum Genet ; 141(10): 1615-1627, 2022 Oct.
Article En | MEDLINE | ID: mdl-35347416

Infertility is a major reproductive health issue that affects about 12% of women of reproductive age in the United States. Aneuploidy in eggs accounts for a significant proportion of early miscarriage and in vitro fertilization failure. Recent studies have shown that genetic variants in several genes affect chromosome segregation fidelity and predispose women to a higher incidence of egg aneuploidy. However, the exact genetic causes of aneuploid egg production remain unclear, making it difficult to diagnose infertility based on individual genetic variants in mother's genome. In this study, we evaluated machine learning-based classifiers for predicting the embryonic aneuploidy risk in female IVF patients using whole-exome sequencing data. Using two exome datasets, we obtained an area under the receiver operating curve of 0.77 and 0.68, respectively. High precision could be traded off for high specificity in classifying patients by selecting different prediction score cutoffs. For example, a strict prediction score cutoff of 0.7 identified 29% of patients as high-risk with 94% precision. In addition, we identified MCM5, FGGY, and DDX60L as potential aneuploidy risk genes that contribute the most to the predictive power of the model. These candidate genes and their molecular interaction partners are enriched for meiotic-related gene ontology categories and pathways, such as microtubule organizing center and DNA recombination. In summary, we demonstrate that sequencing data can be mined to predict patients' aneuploidy risk thus improving clinical diagnosis. The candidate genes and pathways we identified are promising targets for future aneuploidy studies.


Infertility , Preimplantation Diagnosis , Aneuploidy , DNA , Female , Fertilization in Vitro , Humans , Pregnancy , Exome Sequencing
...