Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMEmat ; 2(1)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38586163

RESUMEN

Multiphasic scaffolds with tailored gradient features hold significant promise for tissue regeneration applications. Herein, this work reports the transformation of two-dimensional (2D) layered fiber mats into three dimensional (3D) multiphasic scaffolds using a 'solids-of-revolution' inspired gas-foaming expansion technology. These scaffolds feature precise control over fiber alignment, pore size, and regional structure. Manipulating nanofiber mat layers and Pluronic F127 concentrations allows further customization of pore size and fiber alignment within different scaffold regions. The cellular response to multiphasic scaffolds demonstrates the number of cells migrated and proliferated onto the scaffolds are mainly dependent on the pore size rather than fiber alignment. In vivo subcutaneous implantation of multiphasic scaffolds to rats reveals substantial cell infiltration, neo tissue formation, collagen deposition, and new vessel formation within scaffolds, greatly surpassing the capabilities of traditional nanofiber mats. Histological examination indicates the importance of optimizing pore size and fiber alignment for promotion of cell infiltration and tissue regeneration. Overall, these scaffolds have potential applications in tissue modeling, studying tissue-tissue interactions, interface tissue engineering, and high-throughput screening for optimized tissue regeneration.

2.
Pharmaceutics ; 14(12)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36559206

RESUMEN

Cancer is the leading cause of death after cardiovascular disease. Despite significant advances in cancer research over the past few decades, it is almost impossible to cure end-stage cancer patients and bring them to remission. Adverse effects of chemotherapy are mainly caused by the accumulation of chemotherapeutic agents in normal tissues, and drug resistance hinders the potential therapeutic effects and curing of this disease. New drug formulations need to be developed to overcome these problems and increase the therapeutic index of chemotherapeutics. As a chemotherapeutic delivery platform, three-dimensional (3D) scaffolds are an up-and-coming option because they can respond to biological factors, modify their properties accordingly, and promote site-specific chemotherapeutic deliveries in a sustainable and controlled release manner. This review paper focuses on the features and applications of the variety of 3D scaffold-based nano-delivery systems that could be used to improve local cancer therapy by selectively delivering chemotherapeutics to the target sites in future.

3.
Arch Biochem Biophys ; 691: 108507, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32710884

RESUMEN

Mammalian carnitine acetyltransferase (CrAT) is a mitochondrial enzyme that catalyzes the reversible transfer of an acetyl group from acetyl-CoA to carnitine. CrAT knockout studies have shown that this enzyme is critical to sustain metabolic flexibility, or the ability to switch between different fuel types, an underlying theme of the metabolic syndrome. These recent physiological findings imply that CrAT dysfunction, or its catalytic impairment, may lead to disease. To gain insight into the CrAT kinetic mechanism, we conducted stopped-flow experiments in various enzyme substrate/product conditions and analyzed full progress curves by global fitting. Simultaneous mixing of both substrates with CrAT produced relatively fast kinetics that follows an ordered bi bi mechanism. A great preference for ordered binding is supported by stopped-flow double mixing experiments such that premixed CrAT with acetyl-CoA or CoA demonstrated a biphasic decrease in initial rate that produces about a 100-fold attenuation in catalysis. Double mixing experiments also revealed that the CrAT initial rate is inhibited by 50% in approximately 8 s by either acetyl-CoA or CoA premixing. Analysis of available CrAT structures support a substrate conformational change between acetyl-CoA/CoA binary versus ternary complexes. Additional viscosity-based kinetic experiments yielded strong evidence that product release is the rate limiting step in the CrAT-catalyzed reaction.


Asunto(s)
Carnitina O-Acetiltransferasa/química , Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Animales , Carnitina/química , Carnitina/metabolismo , Carnitina O-Acetiltransferasa/metabolismo , Catálisis , Dominio Catalítico , Coenzima A/química , Coenzima A/metabolismo , Columbidae , Cristalografía por Rayos X , Cinética , Ratones , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA