Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 88
1.
Sci Rep ; 14(1): 9377, 2024 04 23.
Article En | MEDLINE | ID: mdl-38654067

Poor treatment responses of pancreatic ductal adenocarcinoma (PDAC) are in large part due to tumor heterogeneity and an immunosuppressive desmoplastic tumor stroma that impacts interactions with cells in the tumor microenvironment (TME). Thus, there is a pressing need for models to probe the contributions of cellular and noncellular crosstalk. Organoids are promising model systems with the potential to generate a plethora of data including phenotypic, transcriptomic and genomic characterization but still require improvements in culture conditions mimicking the TME. Here, we describe an INTERaction with Organoid-in-MatriX ("InterOMaX") model system, that presents a 3D co-culture-based platform for investigating matrix-dependent cellular crosstalk. We describe its potential to uncover new molecular mechanisms of T cell responses to murine KPC (LSL-KrasG12D/+27/Trp53tm1Tyj/J/p48Cre/+) PDAC cells as well as PDAC patient-derived organoids (PDOs). For this, a customizable matrix and homogenously sized organoid-in-matrix positioning of cancer cells were designed based on a standardized agarose microwell chip array system and established for co-culture with T cells and inclusion of stromal cells. We describe the detection and orthogonal analysis of murine and human PDAC cell populations with distinct sensitivity to T cell killing that is corroborated in vivo. By enabling both identification and validation of gene candidates for T cell resistance, this platform sets the stage for better mechanistic understanding of cancer cell-intrinsic resistance phenotypes in PDAC.


Carcinoma, Pancreatic Ductal , Organoids , Pancreatic Neoplasms , T-Lymphocytes , Tumor Microenvironment , Organoids/pathology , Organoids/metabolism , Animals , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/immunology , Mice , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Coculture Techniques/methods , Cell Line, Tumor
2.
Front Immunol ; 14: 1231274, 2023.
Article En | MEDLINE | ID: mdl-37753087

A multitude of alterations in the old immune system impair its functional integrity. Closely related, older individuals show, for example, a reduced responsiveness to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines. However, systematic strategies to specifically improve the efficacy of vaccines in the old are missing or limited to simple approaches like increasing the antigen concentration or injection frequencies. We here asked whether the intrinsic, trimeric structure of the SARS-CoV-2 spike (S) antigen and/or a DNA- or protein-based antigen delivery platform affects priming of functional antibody responses particularly in old mice. The used S-antigens were primarily defined by the presence/absence of the membrane-anchoring TM domain and the closely interlinked formation/non-formation of a trimeric structure of the receptor binding domain (S-RBD). Among others, we generated vectors expressing prefusion-stabilized, cell-associated (TM+) trimeric "S2-P" or secreted (TM-) monomeric "S6-PΔTM" antigens. These proteins were produced from vector-transfected HEK-293T cells under mild conditions by Strep-tag purification, revealing that cell-associated but not secreted S proteins tightly bound Hsp73 and Grp78 chaperones. We showed that both, TM-deficient S6-PΔTM and full-length S2-P antigens elicited very similar S-RBD-specific antibody titers and pseudovirus neutralization activities in young (2-3 months) mice through homologous DNA-prime/DNA-boost or protein-prime/protein-boost vaccination. The trimeric S2-P antigen induced high S-RBD-specific antibody responses in old (23-24 months) mice through DNA-prime/DNA-boost vaccination. Unexpectedly, the monomeric S6-PΔTM antigen induced very low S-RBD-specific antibody titers in old mice through homologous DNA-prime/DNA-boost or protein-prime/protein-boost vaccination. However, old mice efficiently elicited an S-RBD-specific antibody response after heterologous DNA-prime/protein-boost immunization with the S6-PΔTM antigen, and antibody titers even reached similar levels and neutralizing activities as in young mice and also cross-reacted with different S-variants of concern. The old immune system thus distinguished between trimeric and monomeric S protein conformations: it remained antigen responsive to the trimeric S2-P antigen, and a simple change in the vaccine delivery regimen was sufficient to unleash its reactivity to the monomeric S6-PΔTM antigen. This clearly shows that both the antigen structure and the delivery platform are crucial to efficiently prime humoral immune responses in old mice and might be relevant for designing "age-adapted" vaccine strategies.


Blood Group Antigens , COVID-19 , Vaccines, DNA , Animals , Mice , Antibodies, Neutralizing , SARS-CoV-2 , Immunization
3.
Oncoimmunology ; 12(1): 2215096, 2023.
Article En | MEDLINE | ID: mdl-37261086

The expression of viral antigens in chronic hepatitis B virus (HBV) infection drives continuous liver inflammation, one of the main risk factors to develop liver cancer. HBV developed immune-suppressive functions to escape from the host immune system, but their link to liver tumor development is not well understood. Here, we analyzed if and how HBV surface antigen (HBs) expression in combined hepatocellular-cholangiocarcinoma (cHCC/iCCA) cells influences their antigenicity for CD8 T cells. We randomly isolated liver tumor tissues from AlfpCre+-Trp53fl/fl/Alb-HBs+ tg mice and established primary carcinoma cell lines (pCCL) that showed a bilineal (CK7+/HNF4α+) cHCC/iCCA phenotype. These pCCL uniformly expressed HBs (HBshi), and low levels of MHC-I (MHC-Ilo), and were transiently convertible to a high antigenicity (MHC-Ihi) phenotype by IFN-γ treatment. HBshi/pCCL induced HBs/(Kb/S190-197)-specific CD8 T cells and developed slow-growing tumors in subcutaneously transplanted C57Bl/6J (B6) mice. Interestingly, pCCL-ex cells, established from HBshi/pCCL-induced and re-explanted tumors in B6 but not those in immune-deficient Rag1-/- mice showed major alterations, like an MHC-Ihi phenotype, a prominent growth-biased gene expression signature, a significantly decreased HBs expression (HBslo) and a switch to fast-growing tumors in re-transplanted B6 or PD-1-/- hosts with an unlocked PD-1/PD-L1 control system. CD8 T cell-mediated elimination of HBshi/pCCL, together with the attenuation of the negative restraints of HBs in the tumor cells, like ER-stress, reveals a novel mechanism to unleash highly aggressive HBslo/pCCL-ex immune-escape variants. Under certain conditions, HBs-specific CD8 T-cell responses thus potentiate tumor growth, an aspect that should be considered for therapeutic vaccination strategies against chronic HBV infection and liver tumors.


Carcinoma , Hepatitis B, Chronic , Liver Neoplasms , Mice , Animals , Hepatitis B, Chronic/genetics , Hepatitis B virus/genetics , Programmed Cell Death 1 Receptor , CD8-Positive T-Lymphocytes , Cell Line , Liver Neoplasms/genetics
4.
Vaccines (Basel) ; 10(2)2022 Jan 22.
Article En | MEDLINE | ID: mdl-35214632

New World arenaviruses are rodent-transmitted viruses and include a number of pathogens that are responsible for causing severe human disease. This includes Junín virus (JUNV), which is the causative agent of Argentine hemorrhagic fever. The wild nature and mobility of the rodent reservoir host makes it difficult to control the disease, and currently passive immunization with high-titer neutralizing antibody-containing plasma from convalescent patients is the only specific therapy. However, dwindling supplies of naturally available convalescent plasma, and challenges in developing similar resources for other closely related viruses, have made the development of alternative antibody-based therapeutic approaches of critical importance. In this study, we sought to induce a neutralizing antibody response in rabbits against the receptor-binding subunit of the viral glycoprotein, GP1, and the specific peptide sequences in GP1 involved in cellular receptor contacts. While these specific receptor-interacting peptides did not efficiently induce the production of neutralizing antibodies when delivered as a particulate antigen (as part of hepatitis B virus core-like particles), we showed that recombinant JUNV GP1 purified from transfected mammalian cells induced virus-neutralizing antibodies at high titers in rabbits. Further, neutralization was observed across a range of unrelated JUNV strains, a feature that is critical for effectiveness in the field. These results underscore the potential of GP1 alone to induce a potent neutralizing antibody response and highlight the importance of epitope presentation. In addition, effective virus neutralization by rabbit antibodies supports the potential applicability of this species for the future development of immunotherapeutics (e.g., based on humanized monoclonal antibodies). Such information can be applied in the design of vaccines and immunogens for both prevention and specific therapies against this and likely also other closely related pathogenic New World arenaviruses.

5.
J Immunother Cancer ; 8(2)2020 08.
Article En | MEDLINE | ID: mdl-32868392

BACKGROUND: Many cancer cells express a major histocompatibility complex class I low/ programmed cell death 1 ligand 1 positive (MHC-Ilo/PD-L1+) cell surface profile. For immunotherapy, there is, thus, an urgent need to restore presentation competence of cancer cells with defects in MHC-I processing/presentation combined with immune interventions that tackle the tumor-initiated PD-L1/PD-1 signaling axis. Using pancreatic ductal adenocarcinoma cells (PDACCs) as a model, we here explored if (and how) expression/processing of tumor antigens via transporters associated with antigen processing (TAP) affects priming of CD8 T cells in PD-1/PD-L1-competent/-deficient mice. METHODS: We generated tumor antigen-expressing vectors, immunized TAP-competent/-deficient mice and determined de novo primed CD8 T-cell frequencies by flow cytometry. Similarly, we explored the antigenicity and PD-L1/PD-1 sensitivity of PDACCs versus interferon-γ (IFN-γ)-treated PDACCs in PD-1/PD-L1-competent/deficient mice. The IFN-γ-induced effects on gene and cell surface expression profiles were determined by microarrays and flow cytometry. RESULTS: We identified two antigens (cripto-1 and an endogenous leukemia virus-derived gp70) that were expressed in the Endoplasmic Reticulum (ER) of PDACCs and induced CD8 T-cell responses either independent (Cripto-1:Kb/Cr16-24) or dependent (gp70:Kb/p15E) on TAP by DNA immunization. IFN-γ-treatment of PDACCs in vitro upregulated MHC-I- and TAP- but also PD-L1-expression. Mechanistically, PD-L1/PD-1 signaling was superior to the reconstitution of MHC-I presentation competence, as subcutaneously transplanted IFN-γ-treated PDACCs developed tumors in C57BL/6J and PD-L1-/- but not in PD-1-/- mice. Using PDACCs, irradiated at day 3 post-IFN-γ-treatment or PD-L1 knockout PDACCs as vaccines, we could selectively bypass upregulation of PD-L1, preferentially induce TAP-dependent gp70:Kb/p15E-specific CD8 T cells associated with a weakened PD-1+ exhaustion phenotype and reject consecutively injected tumor transplants in C57BL/6J mice. CONCLUSIONS: The IFN-γ-treatment protocol is attractive for cell-based immunotherapies, because it restores TAP-dependent antigen processing in cancer cells, facilitates priming of TAP-dependent effector CD8 T-cell responses without additional check point inhibitors and could be combined with genetic vaccines that complement priming of TAP-independent CD8 T cells.


CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class I/metabolism , Interferon-gamma/immunology , Pancreatic Neoplasms/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Cell Line, Tumor , Humans , Mice , Rats
6.
Vaccine ; 38(21): 3711-3719, 2020 05 06.
Article En | MEDLINE | ID: mdl-32278524

Somatic mutations in tumors often generate neoproteins that contain MHC-I-binding neoepitopes. Little is known if and how efficient tumor-specific neoantigens activate CD8+ T cells. Here, we asked whether a de novo generated neoepitope, encoded either within an otherwise conserved and ubiquitously expressed self-antigen or in a chimeric HBV core antigen expression platform, providing heterologous helper functions, induces CD8+ T cells in C57Bl/6J mice by DNA immunization. For it, we chose an established Db/Sp244-252/R251H neoepitope generated in the murine Endophilin-B2/SH3GLB2 (EndoB2-Sp) protein by a single amino acid exchange. We showed that a single injection of EndoB2-Sp expression vectors efficiently primed dimer/pentamer+, IFN-γ+ and cytolytic Db/Sp244-252/R251H-specific effector CD8+ T cells in C57Bl/6J mice. Priming of Db/Sp244-252/R251H-specific CD8+ T cells proceeded independent from CD4+ T-cell help in MHC-II-deficient Aα-/- mice. As compared to the homologous EndoB2-Sp vaccine, the selective expression of the Db/Sp244-252/R251H neoepitope in chimeric particle-forming and assembly-deficient HBV core antigens induced comparable frequencies Db/Sp244-252/R251H-specific CD8+ T cells with the same cytolytic effector phenotype. The homologous EndoB2 carrier, but not the nine-residue neoepitope presented on chimeric HBV core particles, induced EndoB2-specific IgG antibody responses. The HBV core expression platform is thus an attractive option to selectively induce neoepitope-specific effector CD8+ T cells by DNA vaccination. These novel findings have practical implications for the design of heterologous/self and heterologous/viral cancer vaccines that prime and/or activate neoepitope-specific CD8+ T cells.


CD8-Positive T-Lymphocytes , Neoplasms , Vaccines, DNA , Adaptor Proteins, Signal Transducing , Animals , Antigens, Heterophile , Antigens, Viral , CD8-Positive T-Lymphocytes/immunology , DNA , Mice , Mice, Inbred C57BL , Vaccination , Vaccines, DNA/genetics
8.
Cancers (Basel) ; 11(10)2019 Sep 21.
Article En | MEDLINE | ID: mdl-31546614

BACKGROUND: Most liver tumors arise on the basis of chronic liver diseases that trigger inflammatory responses. Besides inflammation, subsequent defects in the p53-signaling pathway frequently occurs in liver cancer. In this study, we analyzed the consequences of inflammation and p53 loss in liver carcinogenesis. METHODS: We used inducible liver-specific transgenic mouse strains to analyze the consequences of NF-κB/p65 activation mimicking chronic inflammation and subsequent p53 loss. RESULTS: Ikk2ca driven NF-κB/p65 activation in mice results in liver fibrosis, the formation of ectopic lymphoid structures and carcinogenesis independent of p53 expression. Subsequent deletion of Trp53 led to an increased tumor formation, metastasis and a shift in tumor differentiation towards intrahepatic cholangiocarcinoma. In addition, loss of Trp53 in an inflammatory liver resulted in elevated chromosomal instability and indicated a distinct aberration pattern. CONCLUSIONS: In conclusion, activation of NF-κB/p65 mimicking chronic inflammation provokes the formation of liver carcinoma. Collateral disruption of Trp53 supports tumor progression and influences tumor differentiation and heterogeneity.

9.
Mol Ther ; 27(3): 661-672, 2019 03 06.
Article En | MEDLINE | ID: mdl-30713086

Hepatitis B virus (HBV) core (HBV-C) antigens with homologous or heterologous HIV-tat48-57-like (HBV-C149tat) cationic domains non-specifically bind cellular RNA in vector-transfected cells. Here, we investigated whether RNA-binding to cationic domains influences the immunogenicity of endogenously expressed antigens delivered by DNA vaccination. We initially evaluated induction of HBV-C (Kb/C93)-specific CD8+ T cell responses in C57BL/6J (B6) and 1.4HBV-Smut transgenic (tg) mice that harbor a replicating HBV genome in hepatocytes by DNA immunization. RNA-binding HBV-C and HBV-C149tat antigens moderately enhanced Kb/C93-specific CD8+ T cells in B6 mice as compared with RNA-free HBV-C149 antigen (lacking cationic domains). However, only the RNA-binding antigens elicited Kb/C93-specific CD8+ T cells that inhibited HBV replication in 1.4HBV-Smut tg mice. Moreover, RNA-binding to designer antigens, which express a Kb/p15E epitope from an endogenous murine leukemia virus-derived tumor-specific gp70 protein, was crucial to prime tumor-rejecting effector CD8+ T cells in B6 mice. Antigen-bound endogenous RNAs function as a Toll-like receptor 7 (TLR-7) ligand and stimulated priming of Kb/p15E-specific CD8+ T cells in B6, but not TLR-7-/-, mice. Antigen-bound cellular RNAs thus function as an endogenous natural adjuvant in in vivo vector-transfected cells, and thus are an attractive tool to induce and/or enhance effector CD8+ T cell responses directed against chronic viral infections or tumor self-antigens by DNA vaccination.


CD8-Positive T-Lymphocytes/metabolism , Vaccines, DNA/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Line , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , RNA/genetics , RNA/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Vaccination
10.
Mol Ther Methods Clin Dev ; 12: 123-133, 2019 Mar 15.
Article En | MEDLINE | ID: mdl-30623001

DNA vaccines against autoimmune type 1 diabetes (T1D) contain a nonpredictable risk to induce autoreactive T cell responses rather than a protective immunity. Little is known if (and how) antigen expression and processing requirements favor the induction of autoreactive or protective immune responses by DNA immunization. Here, we analyzed whether structural properties of preproinsulin (ppins) variants and/or subcellular targeting of ppins designer antigens influence the priming of effector CD8+ T cell responses by DNA immunization. Primarily, we used H-2b RIP-B7.1 tg mice, expressing the co-stimulator molecule B7.1 in beta cells, to identify antigens that induce or fail to induce autoreactive ppins-specific (Kb/A12-21 and/or Kb/B22-29) CD8+ T cell responses. Female NOD mice, expressing the diabetes-susceptible H-2g7 haplotype, were used to test ppins variants for their potential to suppress spontaneous diabetes development. We showed that ppins antigens excluded from expression in the endoplasmic reticulum (ER) did not induce CD8+ T cells or autoimmune diabetes in RIP-B7.1 tg mice, but efficiently suppressed spontaneous diabetes development in NOD mice as well as ppins-induced CD8+ T cell-mediated autoimmune diabetes in PD-L1 -/- mice. The induction of a ppins-specific therapeutic immunity in mice has practical implications for the design of immune therapies against T1D in individuals expressing different major histocompatibility complex (MHC) I and II molecules.

11.
Nat Commun ; 9(1): 5435, 2018 12 21.
Article En | MEDLINE | ID: mdl-30575733

Cellular senescence is a stress response that imposes stable cell-cycle arrest in damaged cells, preventing their propagation in tissues. However, senescent cells accumulate in tissues in advanced age, where they might promote tissue degeneration and malignant transformation. The extent of immune-system involvement in regulating age-related accumulation of senescent cells, and its consequences, are unknown. Here we show that Prf1-/- mice with impaired cell cytotoxicity exhibit both higher senescent-cell tissue burden and chronic inflammation. They suffer from multiple age-related disorders and lower survival. Strikingly, pharmacological elimination of senescent-cells by ABT-737 partially alleviates accelerated aging phenotype in these mice. In LMNA+/G609G progeroid mice, impaired cell cytotoxicity further promotes senescent-cell accumulation and shortens lifespan. ABT-737 administration during the second half of life of these progeroid mice abrogates senescence signature and increases median survival. Our findings shed new light on mechanisms governing senescent-cell presence in aging, and could motivate new strategies for regenerative medicine.


Cellular Senescence , Immunosenescence , Perforin/physiology , Animals , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Drug Evaluation, Preclinical , Female , Inflammation/etiology , Male , Mice, Inbred C57BL , Mice, Knockout , Nitrophenols/pharmacology , Nitrophenols/therapeutic use , Piperazines/pharmacology , Piperazines/therapeutic use , Progeria/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
12.
Int J Mol Sci ; 19(12)2018 Nov 29.
Article En | MEDLINE | ID: mdl-30501048

Liver cholestasis is a chronic liver disease and a major health problem worldwide. Cholestasis is characterised by a decrease in bile flow due to impaired secretion by hepatocytes or by obstruction of bile flow through intra- or extrahepatic bile ducts. Thereby cholestasis can induce ductal proliferation, hepatocyte injury and liver fibrosis. Notch signalling promotes the formation and maturation of bile duct structures. Here we investigated the liver regeneration process in the context of cholestasis induced by disruption of the Notch signalling pathway. Liver-specific deletion of recombination signal binding protein for immunoglobulin kappa j region (Rbpj), which represents a key regulator of Notch signalling, induces severe cholestasis through impaired intra-hepatic bile duct (IHBD) maturation, severe necrosis and increased lethality. Deregulation of the biliary compartment and cholestasis are associated with the change of several signalling pathways including a Kyoto Encyclopedia of Genes and Genomes (KEGG) gene set representing the Hippo pathway, further yes-associated protein (YAP) activation and upregulation of SRY (sex determining region Y)-box 9 (SOX9), which is associated with transdifferentiation of hepatocytes. SOX9 upregulation in cholestatic liver injury in vitro is independent of Notch signalling. We could comprehensively address that in vivo Rbpj depletion is followed by YAP activation, which influences the transdifferentiation of hepatocytes and thereby contributing to liver regeneration.


Adaptor Proteins, Signal Transducing/metabolism , Cholestasis/metabolism , Liver Regeneration/physiology , Phosphoproteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Bile Ducts/metabolism , Bile Ducts/physiology , Blotting, Western , Cell Cycle Proteins , Cell Transdifferentiation/genetics , Cell Transdifferentiation/physiology , Cells, Cultured , Cholestasis/genetics , Hepatocytes/cytology , Hepatocytes/metabolism , Liver Regeneration/genetics , Male , Mice , Phosphoproteins/genetics , Signal Transduction/genetics , Signal Transduction/physiology , YAP-Signaling Proteins
13.
Oncol Lett ; 16(5): 6181-6187, 2018 Nov.
Article En | MEDLINE | ID: mdl-30344758

Glioblastoma is the most aggressive tumor of the central nervous system and is manifested by diffuse invasion of glioblastoma stem cells into the healthy tissue, chemoresistance and recurrence. Despite aggressive therapy, consisting of maximal surgical resection, radiotherapy and chemotherapy with temozolomide (Temodal®), life expectancy of patients with glioblastoma is typically less than 15 months. In general, natural isothiocyanates isolated from plants of the Cruciferae family are selectively cytotoxic to tumor cells. It has been demonstrated previously that diisothiocyanate-derived mercapturic acids are highly cytotoxic to colon cancer cells. In the present study, the application of diisothiocyanate-derived mercapturic acids led to a decrease in the viability of an established glioblastoma cell line, primary patient-derived sphere-cultured stem cell-enriched cell populations (SCs), and cells differentiated from SCs. Consequently, targeting glioblastoma cells by diisothiocyanate-derived mercapturic acids is a promising approach to restrict tumor cell growth and may be a novel therapeutic intervention for the treatment of glioblastoma.

14.
Sci Rep ; 8(1): 14660, 2018 10 02.
Article En | MEDLINE | ID: mdl-30279478

The HBV core protein self-assembles into particles and encapsidates immune-stimulatory bacterial RNA through a cationic COOH-terminal (C150-183) domain. To investigate if different cationic domains have an impact on the endogenous RNA-binding of HBV-C antigens in mammalian cells, we developed a strep-tag (st) based expression/purification system for HBV-C/RNA antigens in vector-transfected HEK-293 cells. We showed that HBV-stC but not HBV-stC149 particles (lacking the cationic domain) capture low amounts of mammalian RNA. Prevention of specific phosphorylation in cationic domains, either by exchanging the serine residues S155, S162 and S170 with alanines (HBV-stCAAA) or by exchanging the entire cationic domain with a HIV-tat48-57-like sequence (HBV-stC149tat) enhanced the encapsidation of RNA into mutant core particles. Particle-bound mammalian RNA functioned as TLR-7 ligand and induced a Th1-biased humoral immunity in B6 but not in TLR-7-/- mice by exogenous (protein) and endogenous (DNA) vaccines. Compared to core particles, binding of mammalian RNA to freely exposed cationic domains in assembly-deficient antigens was enhanced. However, RNA bound to non-particulate antigens unleash its Th1-stimulating adjuvant activity by DNA- but not protein-based vaccination. Mammalian RNAs targeted by an endogenously expressed antigen thus function as a natural adjuvant in the host that facilitates priming of Th1-biased immune responses by DNA-based immunization.


Hepatitis B Core Antigens/immunology , Hepatitis B Vaccines/immunology , Hepatitis B virus/immunology , RNA/immunology , Th1 Cells/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cations/metabolism , DNA, Viral/immunology , Female , Genetic Vectors/genetics , HEK293 Cells , Hepatitis B/immunology , Hepatitis B/prevention & control , Hepatitis B/virology , Hepatitis B Core Antigens/genetics , Hepatitis B Core Antigens/metabolism , Hepatitis B Vaccines/administration & dosage , Humans , Immunogenicity, Vaccine , Ligands , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Knockout , Models, Animal , Protein Domains/genetics , Protein Domains/immunology , RNA/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Th1 Cells/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology
15.
Blood ; 132(6): 565-576, 2018 08 09.
Article En | MEDLINE | ID: mdl-29891535

Aging-associated remodeling of the immune system impairs its functional integrity and contributes to increased morbidity and mortality in the elderly. Aging of hematopoietic stem cells (HSCs), from which all cells of the adaptive immune system ultimately originate, might play a crucial role in the remodeling of the aged immune system. We recently reported that aging of HSCs is, in part, driven by elevated activity of the small RhoGTPase Cdc42 and that aged HSCs can be rejuvenated in vitro by inhibition of the elevated Cdc42 activity in aged HSCs with the pharmacological compound CASIN. To study the quality of immune systems stemming selectively from young or aged HSCs, we established a HSC transplantation model in T- and B-cell-deficient young RAG1-/- hosts. We report that both phenotypic and functional changes in the immune system on aging are primarily a consequence of changes in the function of HSCs on aging and, to a large extent, independent of the thymus, as young and aged HSCs reconstituted distinct T- and B-cell subsets in RAG1-/- hosts that mirrored young and aged immune systems. Importantly, aged HSCs treated with CASIN reestablished an immune system similar to that of young animals, and thus capable of mounting a strong immune response to vaccination. Our studies further imply that epigenetic signatures already imprinted in aged HSCs determine the transcriptional profile and function of HSC-derived T and B cells.


Aging/immunology , Cellular Senescence/immunology , Hematopoietic Stem Cells/immunology , Lymphocyte Subsets/immunology , Animals , Cytoskeletal Proteins , Female , Gene Expression Profiling , Genes, RAG-1 , Graft Survival , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Lymphocyte Subsets/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Tissue Donors , Vaccination , Vaccines, DNA/immunology , rho GTP-Binding Proteins/antagonists & inhibitors , rho GTP-Binding Proteins/physiology
16.
Nat Commun ; 9(1): 1488, 2018 04 16.
Article En | MEDLINE | ID: mdl-29662071

Type 1 diabetes mellitus (T1DM) is due to the selective destruction of islet beta cells by immune cells. Current therapies focused on repressing the immune attack or stimulating beta cell regeneration still have limited clinical efficacy. Therefore, it is timely to identify innovative targets to dampen the immune process, while promoting beta cell survival and function. Liver receptor homologue-1 (LRH-1) is a nuclear receptor that represses inflammation in digestive organs, and protects pancreatic islets against apoptosis. Here, we show that BL001, a small LRH-1 agonist, impedes hyperglycemia progression and the immune-dependent inflammation of pancreas in murine models of T1DM, and beta cell apoptosis in islets of type 2 diabetic patients, while increasing beta cell mass and insulin secretion. Thus, we suggest that LRH-1 agonism favors a dialogue between immune and islet cells, which could be druggable to protect against diabetes mellitus.


Cell Communication/drug effects , Diabetes Mellitus, Experimental/therapy , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/drug effects , Phenalenes/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/pathology , Female , Gene Expression Regulation , Humans , Immunity, Innate , Insulin/metabolism , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/pathology , Islets of Langerhans/drug effects , Islets of Langerhans/immunology , Islets of Langerhans/pathology , Islets of Langerhans Transplantation , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/immunology , Streptozocin , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Transplantation, Heterologous
17.
Nat Med ; 23(5): 601-610, 2017 May.
Article En | MEDLINE | ID: mdl-28414328

Splenic marginal zone B (MZB) cells, positioned at the interface between circulating blood and lymphoid tissue, detect and respond to blood-borne antigens. Here we show that MZB cells in mice activate a homeostatic program in response to a high-cholesterol diet (HCD) and regulate both the differentiation and accumulation of T follicular helper (TFH) cells. Feeding mice an HCD resulted in upregulated MZB cell surface expression of the immunoregulatory ligand PDL1 in an ATF3-dependent manner and increased the interaction between MZB cells and pre-TFH cells, leading to PDL1-mediated suppression of TFH cell motility, alteration of TFH cell differentiation, reduced TFH abundance and suppression of the proatherogenic TFH response. Our findings reveal a previously unsuspected role for MZB cells in controlling the TFH-germinal center response to a cholesterol-rich diet and uncover a PDL1-dependent mechanism through which MZB cells use their innate immune properties to limit an exaggerated adaptive immune response.


B-Lymphocytes/immunology , B7-H1 Antigen/immunology , Cholesterol, Dietary/immunology , Diet , Germinal Center/immunology , Lymphoid Tissue/immunology , T-Lymphocytes, Helper-Inducer/immunology , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/immunology , Animals , Atherosclerosis/immunology , Cell Differentiation/immunology , Cell Movement/immunology , Cholesterol/blood , Cholesterol, HDL/blood , Flow Cytometry , Homeostasis , Humans , Lymphocyte Count , Lymphoid Tissue/cytology , Mice , Plaque, Atherosclerotic/blood , Plaque, Atherosclerotic/immunology , Plaque, Atherosclerotic/pathology , Reverse Transcriptase Polymerase Chain Reaction , Spleen/cytology , Spleen/immunology
18.
Theranostics ; 6(10): 1629-40, 2016.
Article En | MEDLINE | ID: mdl-27446497

Checkpoint-blocking antibodies like those targeting the PD-1/PD-L1 pathway have revolutionized oncology. We developed radiotracers based on therapeutic checkpoint-blocking antibodies permitting sensitive and high-resolution PET imaging of both PD-1 and PD-L1 in immunocompetent mice. ImmunoPET of naive mice revealed similar overall expression patterns for PD-1 and PD-L1 in secondary lymphoid organs (spleen and lymph nodes). Interestingly, PD-L1 was also detected in brown adipose tissue (BAT), confirming the notion that BAT is immunologically relevant. Under pathophysiological conditions, strong expression of the receptor/ligand pair was also found in non-lymphoid tissues. Both were specifically detected in malignant tumors. PD-1 was readily detected after combined immunoradiotherapy causing massive tumor infiltration by PD-1+ lymphocytes. PD-L1 tracer uptake was reduced in PD-L1 knockout tumors. Moreover, monitoring the expression changes of PD-L1 in response to its main inducer, the effector T cell cytokine IFN-γ, revealed robust upregulation in the lung. This suggests that T cell responses in the lung, a vital organ continuously exposed to a variety of antigens, are strongly restrained by the PD-1 checkpoint. In turn, this could explain the association of PD-1 checkpoint inhibition with potentially fatal immune-mediated pneumonitis and partially also its efficacy in lung cancer.


Antibodies/administration & dosage , B7-H1 Antigen/analysis , Immunologic Factors/administration & dosage , Positron-Emission Tomography/methods , Programmed Cell Death 1 Receptor/analysis , Animals , B7-H1 Antigen/immunology , Mice , Programmed Cell Death 1 Receptor/immunology
19.
Sci Rep ; 6: 29419, 2016 07 11.
Article En | MEDLINE | ID: mdl-27406624

DNA vaccination is a promising strategy to induce effector T cells but also regulatory Foxp3(+) CD25(+) CD4(+) Treg cells and inhibit autoimmune disorders such as type 1 diabetes. Little is known about the antigen requirements that facilitate priming of Treg cells but not autoreactive effector CD8(+) T cells. We have shown that the injection of preproinsulin (ppins)-expressing pCI/ppins vector into PD-1- or PD-L1-deficient mice induced K(b)/A12-21-monospecific CD8(+) T cells and autoimmune diabetes. A pCI/ppinsΔA12-21 vector (lacking the critical K(b)/A12-21 epitope) did not induce autoimmune diabetes but elicited a systemic Foxp3(+) CD25(+) Treg cell immunity that suppressed diabetes induction by a subsequent injection of the diabetogenic pCI/ppins. TGF-ß expression was significantly enhanced in the Foxp3(+) CD25(+) Treg cell population of vaccinated/ppins-primed mice. Ablation of Treg cells in vaccinated/ppins-primed mice by anti-CD25 antibody treatment abolished the protective effect of the vaccine and enabled diabetes induction by pCI/ppins. Adoptive transfer of Treg cells from vaccinated/ppins-primed mice into PD-L1(-/-) hosts efficiently suppressed diabetes induction by pCI/ppins. We narrowed down the Treg-stimulating domain to a 15-residue ppins76-90 peptide. Vaccine-induced Treg cells thus play a crucial role in the control of de novo primed autoreactive effector CD8(+) T cells in this diabetes model.


CD8-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/immunology , Insulin/immunology , Protein Precursors/immunology , T-Lymphocytes, Regulatory/immunology , Vaccines, DNA/administration & dosage , Adoptive Transfer , Animals , Disease Models, Animal , Forkhead Transcription Factors/analysis , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/metabolism , Vaccines, DNA/immunology
20.
Sci Rep ; 6: 24865, 2016 04 28.
Article En | MEDLINE | ID: mdl-27121087

The hepatitis B virus (HBV) has been described as stealth virus subverting immune responses initially upon infection. Impaired toll-like receptor signaling by the HBV surface antigen (HBsAg) attenuates immune responses to facilitate chronic infection. This implies that HBV replication may trigger host innate immune responses in the absence of HBsAg. Here we tested this hypothesis, using highly replicative transgenic mouse models. An HBV replication-dependent expression of antiviral genes was exclusively induced in HBsAg-deficient mice. These interferon responses attributed to toll-like receptor 3 (TLR3)-activated Kupffer and liver sinusoidal endothelial cells and further controlled the HBV genome replication. However, activation of TLR3 with exogenous ligands indicated additional HBs-independent immune evasion events. Our data demonstrate that in the absence of HBsAg, hepatic HBV replication leads to Tlr3-dependent interferon responses in non-parenchymal liver cells. We hypothesize that HBsAg is a major HBV-mediated evasion mechanism controlling endogenous antiviral responses in the liver. Eradication of HBsAg as a therapeutic goal might facilitate the induction of endogenous antiviral immune responses in patients chronically infected with HBV.


Hepatitis B Surface Antigens/metabolism , Hepatitis B virus/immunology , Hepatitis B virus/physiology , Immune Evasion , Interferons/antagonists & inhibitors , Toll-Like Receptor 3/antagonists & inhibitors , Virus Replication , Animals , Hepatitis B Surface Antigens/genetics , Humans , Mice , Mice, Transgenic
...