Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Chem Biol ; 29(8): 1353-1361.e6, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35705094

RESUMEN

The development of antibodies that target specific glycan structures on cancer cells or human pathogens poses a significant challenge due to the immense complexity of naturally occurring glycans. Automated glycan assembly enables the production of structurally homogeneous glycans in amounts that are difficult to derive from natural sources. Nanobodies (Nbs) are the smallest antigen-binding domains of heavy-chain-only antibodies (hcAbs) found in camelids. To date, the development of glycan-specific Nbs using synthetic glycans has not been reported. Here, we use defined synthetic glycans for alpaca immunization to elicit glycan-specific hcAbs, and describe the identification, isolation, and production of a Nb specific for the tumor-associated carbohydrate antigen Globo-H. The Nb binds the terminal fucose of Globo-H and recognizes synthetic Globo-H in solution and native Globo-H on breast cancer cells with high specificity. These results demonstrate the potential of our approach for generating glycan-targeting Nbs to be used in biomedical and biotechnological applications.


Asunto(s)
Anticuerpos de Dominio Único , Anticuerpos , Fucosa , Humanos , Inmunización , Polisacáridos , Anticuerpos de Dominio Único/química
2.
Glycobiology ; 30(9): 679-694, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32149347

RESUMEN

Protein glycosylation impacts the development and function of innate immune cells. The glycophenotypes and the glycan remodelling associated with the maturation of macrophages from monocytic precursor populations remain incompletely described. Herein, label-free porous graphitised carbon-liquid chromatography-tandem mass spectrometry (PGC-LC-MS/MS) was employed to profile with high resolution the N- and O-glycome associated with human monocyte-to-macrophage transition. Primary blood-derived CD14+ monocytes were differentiated ex vivo in the absence of strong anti- and proinflammatory stimuli using a conventional 7-day granulocyte-macrophage colony-stimulating factor differentiation protocol with longitudinal sampling. Morphology and protein expression monitored by light microscopy and proteomics validated the maturation process. Glycomics demonstrated that monocytes and macrophages display similar N-glycome profiles, comprising predominantly paucimannosidic (Man1-3GlcNAc2Fuc0-1, 22.1-30.8%), oligomannosidic (Man5-9GlcNAc2, 29.8-35.7%) and α2,3/6-sialylated complex-type N-glycans with variable core fucosylation (27.6-39.1%). Glycopeptide analysis validated conjugation of these glycans to human proteins, while quantitative proteomics monitored the glycoenzyme expression levels during macrophage differentiation. Significant interperson glycome variations were observed suggesting a considerable physiology-dependent or heritable heterogeneity of CD14+ monocytes. Only few N-glycome changes correlated with the monocyte-to-macrophage transition across donors including decreased core fucosylation and reduced expression of mannose-terminating (paucimannosidic-/oligomannosidic-type) N-glycans in macrophages, while lectin flow cytometry indicated that more dramatic cell surface glycan remodelling occurs during maturation. The less heterogeneous core 1-rich O-glycome showed a minor decrease in core 2-type O-glycosylation but otherwise remained unchanged with macrophage maturation. This high-resolution glycome map underpinning normal monocyte-to-macrophage transition, the most detailed to date, aids our understanding of the molecular makeup pertaining to two vital innate immune cell types and forms an important reference for future glycoimmunological studies.


Asunto(s)
Macrófagos/metabolismo , Monocitos/metabolismo , Polisacáridos/metabolismo , Cromatografía Liquida , Glicómica , Glicopéptidos/análisis , Glicosilación , Humanos , Polisacáridos/química , Espectrometría de Masas en Tándem
3.
Anal Chem ; 91(7): 4559-4567, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30810297

RESUMEN

Deep characterization of biologically relevant glycans remains challenging. Porous graphitized carbon-liquid chromatography tandem mass spectrometry (PGC-LC-MS/MS) enables the quantitative elucidation of glycan fine structures. However, the early PGC-LC elution of smaller glycans (tri-, tetra-, and pentasaccharides) at low organic solvent content hampers their detection. In efforts to improve the glycan profiling sensitivity and accuracy, we present a new capillary-flow PGC-LC-MS/MS-based configuration comprising a post-column make-up flow (PCMF) that supplies an ion-promoting organic solvent to separated glycans prior to their detection by MS. The analytical performance of this setup was systematically evaluated against our existing capillary-flow PGC-LC-MS/MS platform (Jensen et al., Nat. Protoc. 2012, 7, 1299). Specifically, the ion intensities and signal-to-noise ratios of various classes of nonderivatized glycans from N- and O-glycoproteins and fructooligosaccharide mixtures were compared using methanol (MeOH)-, isopropanol (IPA)-, and acetonitrile (ACN)-based PCMF at various concentrations. In particular, ACN- and IPA-based PCMF dramatically increased the signal response across all glycan types (30- to 100-fold), improved the MS/MS spectral quality, and reduced the quantitative glycoprofile variation between replicates. In particular, the detection of the early eluting glycans benefitted from the PCMF. The highest sensitivity gains were achieved with the supplements of 100% ACN and IPA (equating to 57% (v/v) net concentration at the ion source) while neither compromising the favorable PGC-LC properties including the high peak capacity and glycan isomer separation nor changing the MS detection behavior. In conclusion, PCMF-based PGC-LC-MS/MS dramatically improves the glycomics sensitivity, coverage, and quantitative accuracy not least for the difficult-to-detect early eluting and low-abundance glycans detached from N- and O-glycoproteins.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Glicómica/métodos , Polisacáridos/análisis , 2-Propanol/química , Acetonitrilos/química , Carbono , Glicoproteínas/química , Isomerismo , Porosidad , Espectrometría de Masas en Tándem
4.
Front Oncol ; 8: 70, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29619343

RESUMEN

The glycome of one of the largest and most exposed human organs, the skin, as well as glycan changes associated with non-melanoma skin cancers have not been studied in detail to date. Skin cancers such as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are among the most frequent types of cancers with rising incidence rates in the aging population. We investigated the healthy human skin N- and O-glycome and its changes associated with BCC and SCC. Matched patient samples were obtained from frozen biopsy and formalin-fixed paraffin-embedded tissue samples for glycomics analyses using two complementary glycomics approaches: porous graphitized carbon nano-liquid chromatography electro spray ionization tandem mass spectrometry and capillary gel electrophoresis with laser induced fluorescence detection. The human skin N-glycome is dominated by complex type N-glycans that exhibit almost similar levels of α2-3 and α2-6 sialylation. Fucose is attached exclusively to the N-glycan core. Core 1 and core 2 type O-glycans carried up to three sialic acid residues. An increase of oligomannose type N-glycans and core 2 type O-glycans was observed in BCC and SCC, while α2-3 sialylation levels were decreased in SCC but not in BCC. Furthermore, glycopeptide analyses provided insights into the glycoprotein candidates possibly associated with the observed N-glycan changes, with glycoproteins associated with binding events being the most frequently identified class.

5.
Mol Cell Proteomics ; 17(4): 721-736, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29339411

RESUMEN

Flagellated, Gram-negative, anaerobic, crescent-shaped Selenomonas species are colonizers of the digestive system, where they act at the interface between health and disease. Selenomonas sputigena is also considered a potential human periodontal pathogen, but information on its virulence factors and underlying pathogenicity mechanisms is scarce. Here we provide the first report of a Selenomonas glycoprotein, showing that S. sputigena produces a diversely and heavily O-glycosylated flagellin C9LY14 as a major cellular protein, which carries various hitherto undescribed rhamnose- and N-acetylglucosamine linked O-glycans in the range from mono- to hexasaccharides. A comprehensive glycomic and glycoproteomic assessment revealed extensive glycan macro- and microheterogeneity identified from 22 unique glycopeptide species. From the multiple sites of glycosylation, five were unambiguously identified on the 437-amino acid C9LY14 protein (Thr149, Ser182, Thr199, Thr259, and Ser334), the only flagellin protein identified. The O-glycans additionally showed modifications by methylation and putative acetylation. Some O-glycans carried hitherto undescribed residues/modifications as determined by their respective m/z values, reflecting the high diversity of native S. sputigena flagellin. We also found that monosaccharide rearrangement occurred during collision-induced dissociation (CID) of protonated glycopeptide ions. This effect resulted in pseudo Y1-glycopeptide fragment ions that indicated the presence of additional glycosylation sites on a single glycopeptide. CID oxonium ions and electron transfer dissociation, however, confirmed that just a single site was glycosylated, showing that glycan-to-peptide rearrangement can occur on glycopeptides and that this effect is influenced by the molecular nature of the glycan moiety. This effect was most pronounced with disaccharides. This study is the first report on O-linked flagellin glycosylation in a Selenomonas species, revealing that C9LY14 is one of the most heavily glycosylated flagellins described to date. This study contributes to our understanding of the largely under-investigated surface properties of oral bacteria. The data have been deposited to the ProteomeXchange with identifier PXD005859.


Asunto(s)
Flagelina/metabolismo , Selenomonas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flagelina/genética , Glicopéptidos/metabolismo , Glicosilación , Periodontitis , Polisacáridos/metabolismo , Proteómica , Proteínas Recombinantes/metabolismo , Ramnosa/metabolismo , Selenomonas/genética
6.
Mol Cell Proteomics ; 16(4): 524-536, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28122943

RESUMEN

N- and O-glycans are attractive clinical biomarkers as glycosylation changes in response to diseases. The limited availability of defined clinical specimens impedes glyco-biomarker identification and validation in large patient cohorts. Formalin-fixed paraffin-embedded (FFPE) clinical specimens are the common form of sample preservation in clinical pathology, but qualitative and quantitative N- and O-glycomics of such samples has not been feasible to date. Here, we report a highly sensitive and glycan isomer selective method for simultaneous N- and O-glycomics from histopathological slides. As few as 2000 cells isolated from FFPE tissue sections by laser capture microdissection were sufficient for in-depth histopathology-glycomics using porous graphitized carbon nanoLC ESI-MS/MS. N- and O-glycan profiles were similar between unstained and hematoxylin and eosin stained FFPE samples but differed slightly compared with fresh tissue. This method provides the key to unlock glyco-biomarker information from FFPE histopathological tissues archived in pathology laboratories worldwide.


Asunto(s)
Biomarcadores/metabolismo , Glicómica/métodos , Captura por Microdisección con Láser/métodos , Neoplasias/metabolismo , Cromatografía Liquida/métodos , Humanos , Adhesión en Parafina , Polisacáridos/análisis , Polisacáridos/química , Espectrometría de Masas en Tándem/métodos , Fijación del Tejido
7.
Methods Mol Biol ; 1503: 131-145, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27743364

RESUMEN

The availability of well-defined samples in sufficient numbers represents a major bottleneck for any biomarker related research. The utilization of preserved, archived and clinically well-described samples therefore holds a great potential to bridge this gap. This chapter describes a universal workflow for the comprehensive characterization of N- and O-glycans released from whole formalin-fixed, paraffin-embedded tissue sections, including an option for further partitioning using laser microdissection of specific tissue areas/cell populations. Glycoproteins are extracted and subsequently immobilized onto a PVDF membrane prior enzymatic release of N-glycans. Following N-glycan retrieval O-glycans are released using reductive ß-elimination from the same sample spot, significantly reducing the required amount of starting material. Released and reduced glycan structures are characterized using porous graphitized carbon liquid chromatography online coupled to an electrospray ionization-ion trap mass spectrometer. This technique provides information on the relative abundances of individual glycans along with detailed structural information, including isomer differentiation and functional epitope characterization of N- and O-glycans obtained from minimal amounts of tissue down to a few thousand cells.


Asunto(s)
Glicómica/métodos , Glicoproteínas/química , Adhesión en Parafina/métodos , Polisacáridos/análisis , Fijación del Tejido/métodos , Animales , Cromatografía Liquida/métodos , Formaldehído/química , Grafito/química , Humanos , Proteínas Inmovilizadas/química , Captura por Microdisección con Láser/métodos , Membranas Artificiales , Proteómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Coloración y Etiquetado/métodos , Espectrometría de Masas en Tándem/métodos
8.
Glycobiology ; 26(1): 74-87, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26405108

RESUMEN

Flagellin glycosylation impacts, in several documented cases, the functionality of bacterial flagella. The basis of flagellin glycosylation has been studied for various Gram-negative bacteria, but less is known about flagellin glycans of Gram-positive bacteria including Paenibacillus alvei, a secondary invader of honeybee colonies diseased with European foulbrood. Paenibacillus alvei CCM 2051(T) swarms vigorously on solidified culture medium, with swarming relying on functional flagella as evidenced by abolished biofilm formation of a non-motile P. alvei mutant defective in the flagellin protein Hag. Here, the glycobiology of the polar P. alvei flagella was investigated. Analysis on purified flagellin demonstrated that the 30-kDa Hag protein (PAV_2c01710) is modified with an O-linked trisaccharide comprised of one hexose and two N-acetyl-hexosamine residues, at three sites of glycosylation. Downstream of the hag gene on the bacterial chromosome, two open reading frames (PAV_2c01630, PAV_2c01640) encoding putative glycosyltransferases were shown to constitute a flagellin glycosylation island. Mutants defective in these genes exhibited altered migration in sodium dodecyl sulfate polyacrylamide gel electrophoresis as well as loss of extracellular flagella production and bacterial motility. This study reveals that flagellin glycosylation in P. alvei is pivotal to flagella formation and bacterial motility in vivo, and simultaneously identifies flagella glycosylation as a second protein O-glycosylation system in this bacterium, in addition to the well-investigated S-layer tyrosine O-glycosylation pathway.


Asunto(s)
Flagelina/metabolismo , Paenibacillus/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Hexosas/metabolismo , Datos de Secuencia Molecular , Mutación , Paenibacillus/enzimología , Paenibacillus/genética
9.
Int J Med Microbiol ; 304(7): 851-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25242722

RESUMEN

Vibrio furnissii and Vibrio fluvialis are two closely related species which are regarded as emerging human pathogens. Human infections have been mainly associated with consumption of seafood or drinking of contaminated water. V. furnissii strains can be distinguished from V. fluvialis by their ability to produce gas from fermentation of carbohydrates. In this study, we compare two phenotypic (biochemical testing and matrix-assisted laser desorption/ionisation time of flight mass spectrometry, MALDI-TOF MS) and three genotypic techniques (rpoB sequencing, conventional PCR and real-time PCR) for determination of the two species. The methods were evaluated on a collection of 42 V. furnissii and 32 V. fluvialis strains, which were isolated from marine environments and from animals intended for food production. Four of the applied methods allowed the unambiguous discrimination of the two species, while the biochemical testing was the least reliable technique, due to a high variation in the phenotype of gas production from carbohydrates. In view of the One Health concept reliable diagnostic techniques are a prerequisite for preventive public health measurements, as pathogens isolated from animals can cross species borders and methods for detection of sources, reservoirs and ways of transmission of pathogenic bacteria are indispensable for the prevention of infectious diseases in humans and animals.


Asunto(s)
Técnicas de Tipificación Bacteriana/métodos , Técnicas Bacteriológicas/métodos , Técnicas de Diagnóstico Molecular/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Vibrio/clasificación , Vibrio/aislamiento & purificación , Animales , ARN Polimerasas Dirigidas por ADN , Humanos , Datos de Secuencia Molecular , Alimentos Marinos/microbiología , Análisis de Secuencia de ADN , Vibrio/genética , Vibrio/fisiología , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...