Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2026): 20240868, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38955327

RESUMEN

Biotic interactions play a critical role in shaping patterns of global biodiversity. While several macroecological studies provide evidence for stronger predation in tropical regions compared with higher latitudes, results are variable even within the tropics, and the drivers of this variability are not well understood. We conducted two complementary standardized experiments on communities of sessile marine invertebrate prey and their associated predators to test for spatial and seasonal differences in predation across the tropical Atlantic and Pacific coastlines of Panama. We further tested the prediction that higher predator diversity contributes to stronger impacts of predation, using both direct observations of predators and data from extensive reef surveys. Our results revealed substantially higher predation rates and stronger effects of predators on prey in the Pacific than in the Atlantic, demonstrating striking variation within tropical regions. While regional predator diversity was high in the Atlantic, functional diversity at local scales was markedly low. Peak predation strength in the Pacific occurred during the wet, non-upwelling season when ocean temperatures were warmer and predator communities were more functionally diverse. Our results highlight the importance of regional biotic and abiotic drivers that shape interaction strength and the maintenance of tropical communities, which are experiencing rapid environmental change.


Asunto(s)
Cadena Alimentaria , Conducta Predatoria , Estaciones del Año , Clima Tropical , Animales , Biodiversidad , Panamá , Océano Atlántico , Océano Pacífico , Invertebrados/fisiología
2.
Science ; 376(6598): 1215-1219, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679394

RESUMEN

Early naturalists suggested that predation intensity increases toward the tropics, affecting fundamental ecological and evolutionary processes by latitude, but empirical support is still limited. Several studies have measured consumption rates across latitude at large scales, with variable results. Moreover, how predation affects prey community composition at such geographic scales remains unknown. Using standardized experiments that spanned 115° of latitude, at 36 nearshore sites along both coasts of the Americas, we found that marine predators have both higher consumption rates and consistently stronger impacts on biomass and species composition of marine invertebrate communities in warmer tropical waters, likely owing to fish predators. Our results provide robust support for a temperature-dependent gradient in interaction strength and have potential implications for how marine ecosystems will respond to ocean warming.


Asunto(s)
Organismos Acuáticos , Biomasa , Peces , Calor , Invertebrados , Conducta Predatoria , Animales , Calentamiento Global , Océanos y Mares
3.
Ecology ; 102(8): e03434, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34114663

RESUMEN

Understanding the mechanisms of spatial variation of biological invasions, across local-to-global scales, has been a major challenge. The importance of evolutionary history for invasion dynamics was noted by Darwin, and several studies have since considered how biodiversity of source and recipient regions can influence the probability of invasions. For over a century, the Panama Canal has connected water bodies and biotas with different evolutionary histories, and created a global shipping hot spot, providing unique opportunities to test mechanisms that affect invasion patterns. Here, we test for asymmetry in both the extent of invasions and predation effects, a possible mechanism of biotic resistance, between two tropical oceans at similar latitudes. We estimated nonnative species (NNS) richness for sessile marine invertebrates, using standardized field surveys and literature synthesis, to examine whether invasions are asymmetrical, with more NNS present in the less diverse Pacific compared to the Atlantic. We also experimentally tested whether predation differentially limits the abundance and distribution of these invertebrates between oceans. In standardized surveys, observed total NNS richness was higher in the Pacific (18 NNS, 30% of all Pacific species) than the Atlantic (11 NNS, 13% of all Atlantic species). Similarly, literature-based records also display this asymmetry between coasts. When considering only the reciprocal exchange of NNS between Atlantic and Pacific biotas, NNS exchange from Atlantic to Pacific was eightfold higher than the opposite direction, exceeding the asymmetry predicted by random exchange based simply on differences of overall diversity per region. Predation substantially reduced biomass and changed NNS composition in the Pacific, but no such effects were detected on the Atlantic coast. Specifically, some dominant NNS were particularly susceptible to predation in the Pacific, supporting the hypothesis that predation may reduce the abundance of certain NNS here. These results are consistent with predictions that high diversity in source regions, and species interactions in recipient regions, shape marine invasion patterns. Our comparisons and experiments across two tropical ocean basins, suggest that global invasion dynamics are likely driven by both ecological and evolutionary factors that shape susceptibility to and directionality of invasions across biogeographic scales.


Asunto(s)
Biodiversidad , Invertebrados , Animales , Organismos Acuáticos , Océanos y Mares , Conducta Predatoria
4.
Ecology ; 102(8): e03428, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34105781

RESUMEN

The hypothesis that biotic interactions strengthen toward lower latitudes provides a framework for linking community-scale processes with the macroecological scales that define our biosphere. Despite the importance of this hypothesis for understanding community assembly and ecosystem functioning, the extent to which interaction strength varies across latitude and the effects of this variation on natural communities remain unresolved. Predation in particular is central to ecological and evolutionary dynamics across the globe, yet very few studies explore both community-scale causes and outcomes of predation across latitude. Here we expand beyond prior studies to examine two important components of predation strength: intensity of predation (including multiple dimensions of the predator guild) and impact on prey community biomass and structure, providing one of the most comprehensive examinations of predator-prey interactions across latitude. Using standardized experiments, we tested the hypothesis that predation intensity and impact on prey communities were stronger at lower latitudes. We further assessed prey recruitment to evaluate the potential for this process to mediate predation effects. We used sessile marine invertebrate communities and their fish predators in nearshore environments as a model system, with experiments conducted at 12 sites in four regions spanning the tropics to the subarctic. Our results show clear support for an increase in both predation intensity and impact at lower relative to higher latitudes. The predator guild was more diverse at low latitudes, with higher predation rates, longer interaction durations, and larger predator body sizes, suggesting stronger predation intensity in the tropics. Predation also reduced prey biomass and altered prey composition at low latitudes, with no effects at high latitudes. Although recruitment rates were up to three orders of magnitude higher in the tropics than the subarctic, prey replacement through this process was insufficient to dampen completely the strong impacts of predators in the tropics. Our study provides a novel perspective on the biotic interaction hypothesis, suggesting that multiple components of the predator community likely contribute to predation intensity at low latitudes, with important consequences for the structure of prey communities.


Asunto(s)
Ecosistema , Conducta Predatoria , Animales , Biomasa , Peces , Invertebrados
5.
Ecology ; 94(5): 985-94, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23858639

RESUMEN

A fundamental assumption in invasion biology is that most invasive species exhibit enhanced performance in their introduced range relative to their home ranges. This idea has given rise to numerous hypotheses explaining "invasion success" by virtue of altered ecological and evolutionary pressures. There are surprisingly few data, however, testing the underlying assumption that the performance of introduced populations, including organism size, reproductive output, and abundance, is enhanced in their introduced compared to their native range. Here, we combined data from published studies to test this hypothesis for 26 plant and 27 animal species that are considered to be invasive. On average, individuals of these 53 species were indeed larger, more fecund, and more abundant in their introduced ranges. The overall mean, however, belied significant variability among species, as roughly half of the investigated species (N=27) performed similarly when compared to conspecific populations in their native range. Thus, although some invasive species are performing better in their new ranges, the pattern is not universal, and just as many are performing largely the same across ranges.


Asunto(s)
Ecosistema , Especies Introducidas , Plantas/clasificación , Animales , Teorema de Bayes , Demografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA