Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 616(7956): 306-311, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37045923

RESUMEN

Earth's water, intrinsic oxidation state and metal core density are fundamental chemical features of our planet. Studies of exoplanets provide a useful context for elucidating the source of these chemical traits. Planet formation and evolution models demonstrate that rocky exoplanets commonly formed with hydrogen-rich envelopes that were lost over time1. These findings suggest that Earth may also have formed from bodies with hydrogen-rich primary atmospheres. Here we use a self-consistent thermodynamic model to show that Earth's water, core density and overall oxidation state can all be sourced to equilibrium between hydrogen-rich primary atmospheres and underlying magma oceans in its progenitor planetary embryos. Water is produced from dry starting materials resembling enstatite chondrites as oxygen from magma oceans reacts with hydrogen. Hydrogen derived from the atmosphere enters the magma ocean and eventually the metal core at equilibrium, causing metal density deficits matching that of Earth. Oxidation of the silicate rocks from solar-like to Earth-like oxygen fugacities also ensues as silicon, along with hydrogen and oxygen, alloys with iron in the cores. Reaction with hydrogen atmospheres and metal-silicate equilibrium thus provides a simple explanation for fundamental features of Earth's geochemistry that is consistent with rocky planet formation across the Galaxy.

2.
Science ; 366(6463): 356-359, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31624210

RESUMEN

Oxygen fugacity is a measure of rock oxidation that influences planetary structure and evolution. Most rocky bodies in the Solar System formed at oxygen fugacities approximately five orders of magnitude higher than a hydrogen-rich gas of solar composition. It is unclear whether this oxidation of rocks in the Solar System is typical among other planetary systems. We exploit the elemental abundances observed in six white dwarfs polluted by the accretion of rocky bodies to determine the fraction of oxidized iron in those extrasolar rocky bodies and therefore their oxygen fugacities. The results are consistent with the oxygen fugacities of Earth, Mars, and typical asteroids in the Solar System, suggesting that at least some rocky exoplanets are geophysically and geochemically similar to Earth.

3.
Mon Not R Astron Soc ; 485(3): 4454-4463, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31534279

RESUMEN

Systems of close-in super-Earths and mini-Neptunes display striking diversity in planetary bulk density and composition. Giant impacts are expected to play a role in the formation of many of these worlds. Previous works, focused on the mechanical shock caused by a giant impact, have shown that these impacts can eject large fractions of the planetary envelope, offering a partial explanation for the observed spread in exoplanet compositions. Here, we examine the thermal consequences of giant impacts, and show that the atmospheric loss caused by these effects can significantly exceed that caused by mechanical shocks for hydrogen-helium (H/He) envelopes. Specifically, when a giant impact occurs, part of the impact energy is converted into thermal energy, heating the rocky core and the envelope. We find that the ensuing thermal expansion of the envelope can lead to a period of sustained, rapid mass loss through a Parker wind, resulting in the partial or complete erosion of the H/He envelope. The fraction of the envelope mass lost depends on the planet's orbital distance from its host star and its initial thermal state, and hence age. Planets closer to their host stars are more susceptible to thermal atmospheric loss triggered by impacts than ones on wider orbits. Similarly, younger planets, with rocky cores which are still hot and molten from formation, suffer greater atmospheric loss. This is especially interesting because giant impacts are expected to occur 10-100 Myr after formation, at a time when super-Earths still retain significant internal heat from formation. For planets where the thermal energy of the core is much greater than the envelope energy, i.e. super-Earths with H/He envelope mass fractions roughly less than 8 per cent, the impactor mass required for significant atmospheric removal is M imp/Mp ~ µ/µc ~ 0.1, approximately the ratio of the heat capacities of the envelope and core. In contrast, when the envelope energy dominates the total energy budget, complete loss can occur when the impactor mass is comparable to the envelope mass.

4.
Mon Not R Astron Soc ; 487(1): 24-33, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31534280

RESUMEN

Recent observations revealed a bimodal radius distribution of small, short-period exoplanets with a paucity in their occurrence, a radius 'valley', around 1.5-2.0 R⊕. In this work, we investigate the effect of a planet's own cooling luminosity on its thermal evolution and atmospheric mass loss (core-powered mass-loss) and determine its observational consequences for the radius distribution of small, close-in exoplanets. Using simple analytical descriptions and numerical simulations, we demonstrate that planetary evolution based on the core-powered mass-loss mechanism alone (i.e. without any photoevaporation) can produce the observed valley in the radius distribution. Our results match the valley's location, shape and slope in planet radius-orbital period parameter space, and the relative magnitudes of the planet occurrence rate above and below the valley. We find that the slope of the valley is, to first order, dictated by the atmospheric mass-loss time-scale at the Bondi radius and given by d logR p/d logP ≃ 1/(3(1 - ß)) that evaluates to -0.11 for ß ≃ 4, where M c/M⊕ = (R c/R ⊕) ß (ρ c*/ρ ⊕) ß/3 is the mass-radius relation of the core. This choice for ß yields good agreement with observations and attests to the significance of internal compression for massive planetary cores. We further find that the location of the valley scales as ρ c ∗ - 4 ∕ 9 and that the observed planet population must have predominantly rocky cores with typical water-ice fractions of less than ~20 per cent. Furthermore, we show that the relative magnitude of the planet occurrence rate above and below the valley is sensitive to the details of the planet-mass distribution but that the location of the valley is not.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA