Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Astrophys J ; 158(2)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35095106

RESUMEN

We present revised stellar properties for 172 K2 target stars that were identified as possible hosts of transiting planets during Campaigns 1-17. Using medium-resolution near-infrared spectra acquired with the NASA Infrared Telescope Facility/SpeX and Palomar/TripleSpec, we found that 86 of our targets were bona fide cool dwarfs, 74 were hotter dwarfs, and 12 were giants. Combining our spectroscopic metallicities with Gaia parallaxes and archival photometry, we derived photometric stellar parameters and compared them to our spectroscopic estimates. Although our spectroscopic and photometric radius and temperature estimates are consistent, our photometric mass estimates are systematically ΔM * = 0.11 M⊙ (34%) higher than our spectroscopic mass estimates for the least massive stars (M *,phoi < 0.4 M⊙). Adopting the photometric parameters and comparing our results to parameters reported in the Ecliptic Plane Input Catalog, our revised stellar radii are ΔR * = 0.15R⊙ (40%) larger and our revised stellar effective temperatures are roughly ΔT eff = 65K cooler. Correctly determining the properties of K2 target stars is essential for characterizing any associated planet candidates, estimating the planet search sensitivity, and calculating planet occurrence rates. Even though Gaia parallaxes have increased the power of photometric surveys, spectroscopic characterization remains essential for determining stellar metallicities and investigating correlations between stellar metallicity and planetary properties.

2.
Nature ; 534(7609): 658-61, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27324846

RESUMEN

Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed. The precise ages of meteorites indicate that planetesimals­the building blocks of planets­are produced within the first million years of a star's life. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration. Other theories posit that planet assembly at small orbital separations may be common. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5­10 million years old and has a tenuous dust disk extending outward from about twice the Earth­Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth­Sun separation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...