Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Biol ; 17(5): 504-14, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20534348

RESUMEN

Accumulating evidence suggests that, during translation, nascent chains can form specific interactions with ribosomal exit tunnel to regulate translation and promote initial folding events. The clinically important macrolide antibiotics bind within the exit tunnel and inhibit translation by preventing progression of the nascent chain and inducing peptidyl-tRNA drop-off. Here, we have synthesized amino acid- and peptide-containing macrolides, which are used to demonstrate that distinct amino acids and peptides can establish interaction with components of the ribosomal tunnel and enhance the ribosome-binding and inhibitory properties of the macrolide drugs, consistent with the concept that the exit tunnel is not simply a Teflon-like channel. Surprisingly, we find that macrolide antibiotics do not inhibit translation of all nascent chains similarly, but rather exhibit polypeptide-specific inhibitory effects, providing a change to our general mechanistic understanding of macrolide inhibition.


Asunto(s)
Antibacterianos/química , Macrólidos/química , Inhibidores de la Síntesis de la Proteína/química , Ribosomas/química , Antibacterianos/farmacología , Macrólidos/farmacología , Péptidos/química , Péptidos/farmacología , Unión Proteica , Biosíntesis de Proteínas/efectos de los fármacos , Estructura Terciaria de Proteína , Inhibidores de la Síntesis de la Proteína/farmacología , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Tilosina/química , Tilosina/farmacología
2.
Proc Natl Acad Sci U S A ; 105(36): 13339-44, 2008 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-18757750

RESUMEN

The oxazolidinones represent the first new class of antibiotics to enter into clinical usage within the past 30 years, but their binding site and mechanism of action has not been fully characterized. We have determined the crystal structure of the oxazolidinone linezolid bound to the Deinococcus radiodurans 50S ribosomal subunit. Linezolid binds in the A site pocket at the peptidyltransferase center of the ribosome overlapping the aminoacyl moiety of an A-site bound tRNA as well as many clinically important antibiotics. Binding of linezolid stabilizes a distinct conformation of the universally conserved 23S rRNA nucleotide U2585 that would be nonproductive for peptide bond formation. In conjunction with available biochemical data, we present a model whereby oxazolidinones impart their inhibitory effect by perturbing the correct positioning of tRNAs on the ribosome.


Asunto(s)
Antibacterianos/química , Oxazolidinonas/química , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/enzimología , Antibacterianos/farmacología , Sitios de Unión , Deinococcus/efectos de los fármacos , Deinococcus/enzimología , Modelos Moleculares , Conformación de Ácido Nucleico , Oxazolidinonas/farmacología , Unión Proteica , Estructura Terciaria de Proteína , Ribosomas/efectos de los fármacos
3.
Mol Cell ; 30(1): 26-38, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18406324

RESUMEN

The thiopeptide class of antibiotics targets the GTPase-associated center (GAC) of the ribosome to inhibit translation factor function. Using X-ray crystallography, we have determined the binding sites of thiostrepton (Thio), nosiheptide (Nosi), and micrococcin (Micro), on the Deinococcus radiodurans large ribosomal subunit. The thiopeptides, by binding within a cleft located between the ribosomal protein L11 and helices 43 and 44 of the 23S rRNA, overlap with the position of domain V of EF-G, thus explaining how this class of drugs perturbs translation factor binding to the ribosome. The presence of Micro leads to additional density for the C-terminal domain (CTD) of L7, adjacent to and interacting with L11. The results suggest that L11 acts as a molecular switch to control L7 binding and plays a pivotal role in positioning one L7-CTD monomer on the G' subdomain of EF-G to regulate EF-G turnover during protein synthesis.


Asunto(s)
Bacteriocinas , Regulación de la Expresión Génica , Péptidos , Biosíntesis de Proteínas , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas , Tioestreptona , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacteriocinas/química , Bacteriocinas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Deinococcus/química , Deinococcus/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Péptidos/química , Péptidos/metabolismo , Estructura Terciaria de Proteína , Proteínas Ribosómicas/genética , Ribosomas/química , Ribosomas/metabolismo , Tiazoles/química , Tiazoles/metabolismo , Tioestreptona/química , Tioestreptona/metabolismo
4.
Proc Natl Acad Sci U S A ; 104(49): 19315-20, 2007 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-18042701

RESUMEN

Protein synthesis in the chloroplast is carried out by chloroplast ribosomes (chloro-ribosome) and regulated in a light-dependent manner. Chloroplast or plastid ribosomal proteins (PRPs) generally are larger than their bacterial counterparts, and chloro-ribosomes contain additional plastid-specific ribosomal proteins (PSRPs); however, it is unclear to what extent these proteins play structural or regulatory roles during translation. We have obtained a three-dimensional cryo-EM map of the spinach 70S chloro-ribosome, revealing the overall structural organization to be similar to bacterial ribosomes. Fitting of the conserved portions of the x-ray crystallographic structure of the bacterial 70S ribosome into our cryo-EM map of the chloro-ribosome reveals the positions of PRP extensions and the locations of the PSRPs. Surprisingly, PSRP1 binds in the decoding region of the small (30S) ribosomal subunit, in a manner that would preclude the binding of messenger and transfer RNAs to the ribosome, suggesting that PSRP1 is a translation factor rather than a ribosomal protein. PSRP2 and PSRP3 appear to structurally compensate for missing segments of the 16S rRNA within the 30S subunit, whereas PSRP4 occupies a position buried within the head of the 30S subunit. One of the two PSRPs in the large (50S) ribosomal subunit lies near the tRNA exit site. Furthermore, we find a mass of density corresponding to chloro-ribosome recycling factor; domain II of this factor appears to interact with the flexible C-terminal domain of PSRP1. Our study provides evolutionary insights into the structural and functional roles that the PSRPs play during protein synthesis in chloroplasts.


Asunto(s)
Cloroplastos/química , Proteínas de Plantas/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Cloroplastos/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Evolución Molecular , Proteínas de Plantas/metabolismo , Plastidios/química , Plastidios/ultraestructura , Conformación Proteica , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Spinacia oleracea/metabolismo
5.
Structure ; 15(3): 289-97, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17355865

RESUMEN

In the initiation phase of bacterial translation, the 30S ribosomal subunit captures mRNA in preparation for binding with initiator tRNA. The purine-rich Shine-Dalgarno (SD) sequence, in the 5' untranslated region of the mRNA, anchors the 30S subunit near the start codon, via base pairing with an anti-SD (aSD) sequence at the 3' terminus of 16S rRNA. Here, we present the 3.3 A crystal structure of the Thermus thermophilus 30S subunit bound with an mRNA mimic. The duplex formed by the SD and aSD sequences is snugly docked in a "chamber" between the head and platform domains, demonstrating how the 30S subunit captures and stabilizes the otherwise labile SD helix. This location of the SD helix is suitable for the placement of the start codon AUG in the immediate vicinity of the mRNA channel, in agreement with reported crosslinks between the second position of the start codon and G1530 of 16S rRNA.


Asunto(s)
ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Sitios de Unión/genética , Cristalografía por Rayos X , Unión Proteica/fisiología , Estructura Terciaria de Proteína , Thermus thermophilus/química , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
6.
Nat Struct Mol Biol ; 13(10): 871-8, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16998488

RESUMEN

Kasugamycin (Ksg) specifically inhibits translation initiation of canonical but not of leaderless messenger RNAs. Ksg inhibition is thought to occur by direct competition with initiator transfer RNA. The 3.35-A structure of Ksg bound to the 30S ribosomal subunit presented here provides a structural description of two Ksg-binding sites as well as a basis for understanding Ksg resistance. Notably, neither binding position overlaps with P-site tRNA; instead, Ksg mimics codon nucleotides at the P and E sites by binding within the path of the mRNA. Coupled with biochemical experiments, our results suggest that Ksg indirectly inhibits P-site tRNA binding through perturbation of the mRNA-tRNA codon-anticodon interaction during 30S canonical initiation. In contrast, for 70S-type initiation on leaderless mRNA, the overlap between mRNA and Ksg is reduced and the binding of tRNA is further stabilized by the presence of the 50S subunit, minimizing Ksg efficacy.


Asunto(s)
Aminoglicósidos/farmacología , Escherichia coli/química , Iniciación de la Cadena Peptídica Traduccional , ARN Bacteriano/química , ARN Mensajero/química , ARN de Transferencia/metabolismo , Aminoglicósidos/química , Aminoglicósidos/metabolismo , Antibacterianos/química , Sitios de Unión , Codón , Modelos Moleculares , Nucleótidos/química , Estructura Terciaria de Proteína , ARN de Transferencia/química , Relación Estructura-Actividad
7.
EMBO J ; 24(2): 251-60, 2005 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-15616575

RESUMEN

This study presents the crystal structure of domain I of the Escherichia coli ribosome recycling factor (RRF) bound to the Deinococcus radiodurans 50S subunit. The orientation of RRF is consistent with the position determined on a 70S-RRF complex by cryoelectron microscopy (cryo-EM). Alignment, however, requires a rotation of 7 degrees and a shift of the cryo-EM RRF by a complete turn of an alpha-helix, redefining the contacts established with ribosomal components. At 3.3 A resolution, RRF is seen to interact exclusively with ribosomal elements associated with tRNA binding and/or translocation. Furthermore, these results now provide a high-resolution structural description of the conformational changes that were suspected to occur on the 70S-RRF complex, which has implications for the synergistic action of RRF with elongation factor G (EF-G). Specifically, the tip of the universal bridge element H69 is shifted by 20 A toward h44 of the 30S subunit, suggesting that RRF primes the intersubunit bridge B2a for the action of EF-G. Collectively, our data enable a model to be proposed for the dual action of EF-G and RRF during ribosome recycling.


Asunto(s)
Proteínas/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Cristalografía por Rayos X , Deinococcus/metabolismo , Escherichia coli/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Proteínas Ribosómicas , Homología de Secuencia de Aminoácido
8.
FEBS Lett ; 567(1): 20-6, 2004 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15165888

RESUMEN

The linkage between internal ribosomal symmetry and transfer RNA (tRNA) positioning confirmed positional catalysis of amino-acid polymerization. Peptide bonds are formed concurrently with tRNA-3' end rotatory motion, in conjunction with the overall messenger RNA (mRNA)/tRNA translocation. Accurate substrate alignment, mandatory for the processivity of protein biosynthesis, is governed by remote interactions. Inherent flexibility of a conserved nucleotide, anchoring the rotatory motion, facilitates chirality discrimination and antibiotics synergism. Potential tRNA interactions explain the universality of the tRNA CCA-end and P-site preference of initial tRNA. The interactions of protein L2 tail with the symmetry-related region periphery explain its conservation and its contributions to nascent chain elongation.


Asunto(s)
Cristalografía por Rayos X/métodos , Ribosomas/química , Ribosomas/ultraestructura , Aminoácidos/química , Antibacterianos/química , Azitromicina/farmacología , Catálisis , Modelos Moleculares , Péptidos/química , Isoformas de Proteínas , Estructura Terciaria de Proteína , Transporte de Proteínas , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Especificidad por Sustrato , Virginiamicina/farmacología
9.
Biopolymers ; 70(1): 19-41, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12925991

RESUMEN

Ribosomes, the universal cellular organelles catalyzing the translation of genetic code into proteins, are protein/RNA assemblies, of a molecular weight 2.5 mega Daltons or higher. They are built of two subunits that associate for performing protein biosynthesis. The large subunit creates the peptide bond and provides the path for emerging proteins. The small has key roles in initiating the process and controlling its fidelity. Crystallographic studies on complexes of the small and the large eubacterial ribosomal subunits with substrate analogs, antibiotics, and inhibitors confirmed that the ribosomal RNA governs most of its activities, and indicated that the main catalytic contribution of the ribosome is the precise positioning and alignment of its substrates, the tRNA molecules. A symmetry-related region of a significant size, containing about two hundred nucleotides, was revealed in all known structures of the large ribosomal subunit, despite the asymmetric nature of the ribosome. The symmetry rotation axis, identified in the middle of the peptide-bond formation site, coincides with the bond connecting the tRNA double-helical features with its single-stranded 3' end, which is the moiety carrying the amino acids. This thus implies sovereign movements of tRNA features and suggests that tRNA translocation involves a rotatory motion within the ribosomal active site. This motion is guided and anchored by ribosomal nucleotides belonging to the active site walls, and results in geometry suitable for peptide-bond formation with no significant rearrangements. The sole geometrical requirement for this proposed mechanism is that the initial P-site tRNA adopts the flipped orientation. The rotatory motion is the major component of unified machinery for peptide-bond formation, translocation, and nascent protein progression, since its spiral nature ensures the entrance of the nascent peptide into the ribosomal exit tunnel. This tunnel, assumed to be a passive path for the growing chains, was found to be involved dynamically in gating and discrimination.


Asunto(s)
Cristalografía por Rayos X/métodos , Ribosomas/química , Antibacterianos/química , Dominio Catalítico , Modelos Moleculares , Conformación Molecular , Conformación de Ácido Nucleico , Péptidos/química , Peptidil Transferasas/química , Unión Proteica , Conformación Proteica , ARN/química , ARN de Transferencia/química , Tetraciclina/química
10.
J Bacteriol ; 185(14): 4276-9, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12837804

RESUMEN

The crystal structure of the ketolide telithromycin bound to the Deinococcus radiodurans large ribosomal subunit shows that telithromycin blocks the ribosomal exit tunnel and interacts with domains II and V of the 23S RNA. Comparisons to other clinically relevant macrolides provided structural insights into its enhanced activity against macrolide-resistant strains.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Deinococcus/efectos de los fármacos , Farmacorresistencia Bacteriana , Eritromicina/análogos & derivados , Cetólidos , Macrólidos , Antibacterianos/metabolismo , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Deinococcus/genética , Deinococcus/metabolismo , Eritromicina/química , Eritromicina/metabolismo , Eritromicina/farmacología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo
11.
Eur J Biochem ; 270(12): 2543-56, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12787020

RESUMEN

High-resolution crystal structures of large ribosomal subunits from Deinococcus radiodurans complexed with tRNA-mimics indicate that precise substrate positioning, mandatory for efficient protein biosynthesis with no further conformational rearrangements, is governed by remote interactions of the tRNA helical features. Based on the peptidyl transferase center (PTC) architecture, on the placement of tRNA mimics, and on the existence of a two-fold related region consisting of about 180 nucleotides of the 23S RNA, we proposed a unified mechanism integrating peptide bond formation, A-to-P site translocation, and the entrance of the nascent protein into its exit tunnel. This mechanism implies sovereign, albeit correlated, motions of the tRNA termini and includes a spiral rotation of the A-site tRNA-3' end around a local two-fold rotation axis, identified within the PTC. PTC features, ensuring the precise orientation required for the A-site nucleophilic attack on the P-site carbonyl-carbon, guide these motions. Solvent mediated hydrogen transfer appears to facilitate peptide bond formation in conjunction with the spiral rotation. The detection of similar two-fold symmetry-related regions in all known structures of the large ribosomal subunit, indicate the universality of this mechanism, and emphasizes the significance of the ribosomal template for the precise alignment of the substrates as well as for accurate and efficient translocation. The symmetry-related region may also be involved in regulatory tasks, such as signal transmission between the ribosomal features facilitating the entrance and the release of the tRNA molecules. The protein exit tunnel is an additional feature that has a role in cellular regulation. We showed by crystallographic methods that this tunnel is capable of undergoing conformational oscillations and correlated the tunnel mobility with sequence discrimination, gating and intracellular regulation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Péptidos/química , Transporte de Proteínas , Ribosomas/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Deinococcus/metabolismo , Modelos Moleculares , Conformación Proteica , ARN de Transferencia/química , ARN de Transferencia/metabolismo
12.
Nat Struct Biol ; 10(5): 366-70, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12665853

RESUMEN

Nascent proteins emerge out of ribosomes through an exit tunnel, which was assumed to be a firmly built passive path. Recent biochemical results, however, indicate that the tunnel plays an active role in sequence-specific gating of nascent chains and in responding to cellular signals. Consistently, modulation of the tunnel shape, caused by the binding of the semi-synthetic macrolide troleandomycin to the large ribosomal subunit from Deinococcus radiodurans, was revealed crystallographically. The results provide insights into the tunnel dynamics at high resolution. Here we show that, in addition to the typical steric blockage of the ribosomal tunnel by macrolides, troleandomycin induces a conformational rearrangement in a wall constituent, protein L22, flipping the tip of its highly conserved beta-hairpin across the tunnel. On the basis of mutations that alleviate elongation arrest, the tunnel motion could be correlated with sequence discrimination and gating, suggesting that specific arrest motifs within nascent chain sequences may induce a similar gating mechanism.


Asunto(s)
Ribosomas/fisiología , Ribosomas/ultraestructura , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Ribosómicas/química , Proteínas Ribosómicas/ultraestructura , Transducción de Señal
13.
Mol Cell ; 11(1): 91-102, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12535524

RESUMEN

Crystal structures of tRNA mimics complexed with the large ribosomal subunit of Deinococcus radiodurans indicate that remote interactions determine the precise orientation of tRNA in the peptidyl-transferase center (PTC). The PTC tolerates various orientations of puromycin derivatives and its flexibility allows the conformational rearrangements required for peptide-bond formation. Sparsomycin binds to A2602 and alters the PTC conformation. H69, the intersubunit-bridge connecting the PTC and decoding site, may also participate in tRNA placement and translocation. A spiral rotation of the 3' end of the A-site tRNA around a 2-fold axis of symmetry identified within the PTC suggests a unified ribosomal machinery for peptide-bond formation, A-to-P-site translocation, and entrance of nascent proteins into the exit tunnel. Similar 2-fold related regions, detected in all known structures of large ribosomal subunits, indicate the universality of this mechanism.


Asunto(s)
Deinococcus/genética , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , Conformación Proteica , Aminoacil-ARN de Transferencia/química , Proteínas Ribosómicas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/metabolismo , Puromicina/química , Puromicina/metabolismo , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Esparsomicina/química , Esparsomicina/metabolismo
14.
Curr Drug Targets Infect Disord ; 2(2): 169-86, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12462147

RESUMEN

Resistance to antibiotics is a major problem in modern therapeutics. Ribosomes, the cellular organelle catalyzing the translation of the genetic code into proteins, are targets for several clinically relevant antibiotics. The ribosomes from eubacteria are excellent pathogen models. High resolution structures of the large and small ribosomal subunits were used as references that allowed unambiguous localization of almost a dozen antibiotic drugs, most of which are clinically relevant. Analyses of these structures showed a great diversity in the antibiotics' modes of action, such as interference with substrate binding, hindrance of the mobility required for the biosynthetic process and the blockage of tunnel which provides the path of exit for nascent proteins. All antibiotics studied by us were found to bind primarily to ribosomal RNA and, except for one allosteric effect, their binding did not cause major conformational changes. Antibiotics of the small ribosomal subunit may hinder tRNA binding, decoding, translocation, and the initiation of the entire biosynthetic process. The large subunit agents may target the GTPase center, interfere with peptide bond formation, or block the entrance of the nascent protein exit tunnel. The overall structure of the peptidyl transferase center and the modes of action of the antibiotic agents indicate that the ribosome serves as a template for proper positioning of tRNAs, rather than participating actively in the catalytic events associated with the creation of peptide bonds.


Asunto(s)
Antibacterianos/farmacología , Ribosomas/efectos de los fármacos , Cristalografía , Farmacorresistencia Bacteriana , Macrólidos , Biosíntesis de Proteínas , Conformación Proteica , Ribosomas/química , Tetraciclina/farmacología
15.
Biochimie ; 84(5-6): 447-54, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12423788

RESUMEN

Colicin E3 is a protein that kills Escherichia coli cells by a process that involves binding to a surface receptor, entering the cell and inactivating its protein biosynthetic machinery. Colicin E3 kills cells by a catalytic mechanism of a specific ribonucleolytic cleavage in 16S rRNA at the ribosomal decoding A-site between A1493 and G1494 (E. coli numbering system). The breaking of this single phosphodiester bond results in a complete cessation of protein biosynthesis and cell death. The inactive E517Q mutant of the catalytic domain of colicin E3 binds to 30S ribosomal subunits of Thermus thermophilus, as demonstrated by an immunoblotting assay. A model structure of the complex of the ribosomal subunit 30S and colicin E3, obtained via docking, explains the role of the catalytic residues, suggests a catalytic mechanism and provides insight into the specificity of the reaction. Furthermore, the model structure suggests that the inhibitory action of bound immunity is due to charge repulsion of this acidic protein by the negatively charged rRNA backbone


Asunto(s)
Colicinas/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Ribosomas/metabolismo , Proteínas Bacterianas/metabolismo , Colicinas/antagonistas & inhibidores , Colicinas/genética , Mutación , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Thermus thermophilus/metabolismo
16.
Curr Protein Pept Sci ; 3(1): 55-65, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12370011

RESUMEN

Analysis of the high resolution structure of the small subunit from Thermus thermophilus shed light on its inherent conformational variability and indicated an interconnected network of features allowing concerted movements during translocation. It also showed that conformational rearrangements may be involved in subunit association and that a latch-like movement guarantees processivity and ensures maximized fidelity. Conformational mobility is associated with the binding and the anti association function of initiation factor 3, and antibiotics interfering with prevent the initiation of the biosynthetic process. Proteins stabilize the structure mainly by their long basic extensions that penetrate into the ribosomal RNA. When pointing into the solution, these extensions may have functional roles in binding of non-ribosomal factors participating in the process of protein biosynthesis. In addition, although the decoding center is formed of RNA, proteins seem to serve ancillary functions such as stabilizing ist required conformation and assisting the directionality of the translocation.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas/fisiología , ARN Bacteriano/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Thermus thermophilus/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Edeína/farmacología , Técnicas In Vitro , Conformación de Ácido Nucleico , Conformación Proteica , Inhibidores de la Síntesis de la Proteína/farmacología , ARN de Transferencia/química , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Tetraciclina/farmacología , Thermus thermophilus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA