Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Springerplus ; 5(1): 1260, 2016.
Article En | MEDLINE | ID: mdl-27536543

The polychaete Sabellaria alveolata (Linnaeus, 1767) is an important ecosystem engineer building reef structures which add to the topographic complexity in colonized areas. In Europe, the most extensive reef formation is located in the Bay of Mont-Saint-Michel (France). Since 2006, Sabellaria bio-constructions have developed on hard substrates along the west coast of the Cotentin Peninsula between Champeaux and Saint-Germain-sur-Ay on the northern part of the Bay of Mont-Saint-Michel. In this sector, two distinct types of bio-construction can be distinguished: platforms and reefs. The aim of this study is to analyse the patterns of the associated macrofauna on these platforms and reefs, as well as outside, and test for a correlation between the presence of Sabellaria bio-constructions and the richness of the benthic macrofauna. Univariate analyses are used to compare the macrofauna on four sites (Champeaux, Lingreville, Blainville-sur-Mer and Saint-Germain-sur-Ay). The results show a higher taxonomic richness on the platform-type than on the reef-type structures, and also a higher taxonomic richness outside the bio-construction areas. This suggests that, on the examined sites, the presence of S. alveolata bio-constructions does not contribute to higher levels of benthic macrofaunal richness on hard substrates. Temporary bio-constructions along this coast exhibit reefs of interest at some sites as well as in very small zones which merit special attention.

2.
Proc Biol Sci ; 281(1795)2014 11 22.
Article En | MEDLINE | ID: mdl-25297864

Environmental conditions can shape genetic and morphological divergence. Release of new habitats during historical environmental changes was a major driver of evolutionary diversification. Here, forces shaping population structure and ecotype differentiation ('pelagic' and 'coastal') of bottlenose dolphins in the North-east Atlantic were investigated using complementary evolutionary and ecological approaches. Inference of population demographic history using approximate Bayesian computation indicated that coastal populations were likely founded by the Atlantic pelagic population after the Last Glacial Maxima probably as a result of newly available coastal ecological niches. Pelagic dolphins from the Atlantic and the Mediterranean Sea likely diverged during a period of high productivity in the Mediterranean Sea. Genetic differentiation between coastal and pelagic ecotypes may be maintained by niche specializations, as indicated by stable isotope and stomach content analyses, and social behaviour. The two ecotypes were only weakly morphologically segregated in contrast to other parts of the World Ocean. This may be linked to weak contrasts between coastal and pelagic habitats and/or a relatively recent divergence. We suggest that ecological opportunity to specialize is a major driver of genetic and morphological divergence. Combining genetic, ecological and morphological approaches is essential to understanding the population structure of mobile and cryptic species.


Animal Distribution , Bottle-Nosed Dolphin/anatomy & histology , Bottle-Nosed Dolphin/physiology , Genetic Variation , Animals , Bottle-Nosed Dolphin/genetics , DNA, Mitochondrial/genetics , Diet , Ecosystem , Europe , Molecular Sequence Data , Sequence Analysis, DNA
...