Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 7(8): 1181-1193, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37429904

RESUMEN

Explaining broad molecular, phenotypic and species biodiversity patterns necessitates a unifying framework spanning multiple evolutionary scales. Here we argue that although substantial effort has been made to reconcile microevolution and macroevolution, much work remains to identify the links between biological processes at play. We highlight four major questions of evolutionary biology whose solutions require conceptual bridges between micro and macroevolution. We review potential avenues for future research to establish how mechanisms at one scale (drift, mutation, migration, selection) translate to processes at the other scale (speciation, extinction, biogeographic dispersal) and vice versa. We propose ways in which current comparative methods to infer molecular evolution, phenotypic evolution and species diversification could be improved to specifically address these questions. We conclude that researchers are in a better position than ever before to build a synthesis to understand how microevolutionary dynamics unfold over millions of years.


Asunto(s)
Evolución Biológica , Evolución Molecular , Biodiversidad
2.
Ecol Lett ; 26(1): 111-123, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36450600

RESUMEN

Species competing for resources also commonly share predators. While competition often drives divergence between species, the effects of shared predation are less understood. Theoretically, competing prey species could either diverge or evolve in the same direction under shared predation depending on the strength and symmetry of their interactions. We took an empirical approach to this question, comparing antipredator and trophic phenotypes between sympatric and allopatric populations of threespine stickleback and prickly sculpin fish that all live in the presence of a trout predator. We found divergence in antipredator traits between the species: in sympatry, antipredator adaptations were relatively increased in stickleback but decreased in sculpin. Shifts in feeding morphology, diet and habitat use were also divergent but driven primarily by stickleback evolution. Our results suggest that asymmetric ecological character displacement indirectly made stickleback more and sculpin less vulnerable to shared predation, driving divergence of antipredator traits between sympatric species.


Asunto(s)
Perciformes , Smegmamorpha , Animales , Conducta Predatoria , Ecosistema , Peces , Smegmamorpha/genética , Smegmamorpha/anatomía & histología , Aclimatación
3.
Commun Biol ; 5(1): 1126, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284162

RESUMEN

Rapid technological improvements are democratizing access to high quality, chromosome-scale genome assemblies. No longer the domain of only the most highly studied model organisms, now non-traditional and emerging model species can be genome-enabled using a combination of sequencing technologies and assembly software. Consequently, old ideas built on sparse sampling across the tree of life have recently been amended in the face of genomic data drawn from a growing number of high-quality reference genomes. Arguably the most valuable are those long-studied species for which much is already known about their biology; what many term emerging model species. Here, we report a highly complete chromosome-scale genome assembly for the brown anole, Anolis sagrei - a lizard species widely studied across a variety of disciplines and for which a high-quality reference genome was long overdue. This assembly exceeds the vast majority of existing reptile and snake genomes in contiguity (N50 = 253.6 Mb) and annotation completeness. Through the analysis of this genome and population resequence data, we examine the history of repetitive element accumulation, identify the X chromosome, and propose a hypothesis for the evolutionary history of fusions between autosomes and the X that led to the sex chromosomes of A. sagrei.


Asunto(s)
Lagartos , Animales , Lagartos/genética , Genoma , Cromosomas Sexuales , Genómica , Cromosoma X
4.
Am Nat ; 200(3): E93-E109, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35977784

RESUMEN

AbstractIt is thought that two species can coexist if they use different resources present in the environment, yet this assumes that species are completely reproductively isolated. We simulate coexistence outcomes for two sympatric species that are ecologically differentiated but have incomplete reproductive isolation. The consequences of interbreeding crucially depend on hybrid fitness. When hybrid fitness is high, just a small rate of hybridization can lead to collapse of two species into one. Low hybrid fitness can cause population declines, making extinction of one or both species likely. High intrinsic growth rates result in higher reproductive rates when populations are below carrying capacity, reducing the probability of extinction and increasing the probability of stable coexistence at moderate levels of assortative mating and hybrid fitness. Very strong but incomplete assortative mating can induce low hybrid fitness via a mating disadvantage to rare genotypes, and this can stabilize coexistence of two species at high but incomplete levels of assortative mating. Given these results and evidence that it may take many millions of years of divergence before related species become sympatric, we postulate that coexistence of closely related species is more often limited by insufficient assortative mating than by insufficient ecological differentiation.


Asunto(s)
Hibridación Genética , Aislamiento Reproductivo , Genotipo , Reproducción , Simpatría
5.
Proc Natl Acad Sci U S A ; 119(30): e2122153119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858397

RESUMEN

Speciation is the process by which barriers to gene flow evolve between populations. Although we now know that speciation is largely driven by natural selection, knowledge of the agents of selection and the genetic and genomic mechanisms that facilitate divergence is required for a satisfactory theory of speciation. In this essay, we highlight three advances/problems in our understanding of speciation that have arisen from studies of the genes and genomic regions that underlie the evolution of reproductive isolation. First, we describe how the identification of "speciation" genes makes it possible to identify the agents of selection causing the evolution of reproductive isolation, while also noting that the link between the genetics of phenotypic divergence and intrinsic postzygotic reproductive barriers remains tenuous. Second, we discuss the important role of recombination suppressors in facilitating speciation with gene flow, but point out that the means and timing by which reproductive barriers become associated with recombination cold spots remains uncertain. Third, we establish the importance of ancient genetic variation in speciation, although we argue that the focus of speciation studies on evolutionarily young groups may bias conclusions in favor of ancient variation relative to new mutations.


Asunto(s)
Especiación Genética , Aislamiento Reproductivo , Selección Genética , Flujo Génico , Genoma
6.
Proc Biol Sci ; 289(1974): 20220422, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35506223

RESUMEN

In contrast to ecological speciation, where reproductive isolation evolves as a consequence of divergent natural selection, speciation by parallel natural selection has been less thoroughly studied. To test whether parallel evolution drives speciation, we leveraged the repeated evolution of benthic and limnetic ecotypes of threespine stickleback fish and estimated fitness for pure crosses and within-ecotype hybrids in semi-natural ponds and in laboratory aquaria. In ponds, we detected hybrid breakdown in both ecotypes but this was counterbalanced by heterosis and the strength of post-zygotic isolation was nil. In aquaria, we detected heterosis in limnetic crosses and breakdown in benthic crosses, which is suggestive of process- and ecotype-specific environment-dependence. In ponds, heterosis and breakdown were three times greater in limnetic crosses than in benthic crosses, contrasting the prediction that the fitness consequences of hybridization should be greater in crosses among more derived ecotypes. Consistent with a primary role for stochastic processes, patterns differed among crosses between populations from different lakes. Yet, the observation of qualitatively similar patterns of heterosis and hybrid breakdown for both ecotypes when averaging the lake pairs indicates that the outcome of hybridization is repeatable in a general sense.


Asunto(s)
Vigor Híbrido , Smegmamorpha , Animales , Especiación Genética , Hibridación Genética , Selección Genética , Smegmamorpha/genética
7.
Ecol Evol ; 12(4): e8831, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35432932

RESUMEN

A solitary population of consumers frequently evolves to the middle of a resource gradient and an intermediate mean phenotype compared to a sympatric pair of competing species that diverge to either side via character displacement. The forces governing the distribution of phenotypes in these allopatric populations, however, are little investigated. Theory predicts that the intermediate mean phenotype of the generalist should be maintained by negative frequency-dependent selection, whereby alternate extreme phenotypes are favored because they experience reduced competition for resources when rare. However, the theory makes assumptions that are not always met, and alternative explanations for an intermediate phenotype are possible. We provide a test of this prediction in a mesocosm experiment using threespine stickleback that are ecologically and phenotypically intermediate between the more specialized stickleback species that occur in pairs. We manipulated the frequency distribution of phenotypes in two treatments and then measured effects on a focal intermediate population. We found a slight frequency-dependent effect on survival in the predicted direction but not on individual growth rates. This result suggests that frequency-dependent selection might be a relatively weak force across the range of phenotypes within an intermediate population and we suggest several general reasons why this might be so. We propose that allopatric populations might often be maintained at an intermediate phenotype instead by stabilizing or fluctuating directional selection.

8.
Ecol Lett ; 25(3): 635-646, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35199924

RESUMEN

Where is evolution fastest? The biotic interactions hypothesis proposes that greater species richness creates more ecological opportunity, driving faster evolution at low latitudes, whereas the 'empty niches' hypothesis proposes that ecological opportunity is greater where diversity is low, spurring faster evolution at high latitudes. We tested these contrasting predictions by analysing rates of beak evolution for a global dataset of 1141 avian sister species. Rates of beak size evolution are similar across latitudes, with some evidence that beak shape evolves faster in the temperate zone, consistent with the empty niches hypothesis. The empty niches hypothesis is further supported by a meta-analysis showing that rates of trait evolution and recent speciation are generally faster in the temperate zone, whereas rates of molecular evolution are slightly faster in the tropics. Our results suggest that drivers of evolutionary diversification are either similar across latitudes or more potent in the temperate zone, thus calling into question multiple hypotheses that invoke faster tropical evolution to explain the latitudinal diversity gradient.


Asunto(s)
Pico , Biodiversidad , Animales , Evolución Biológica , Aves , Evolución Molecular , Filogenia
9.
Evol Lett ; 6(1): 34-45, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35127136

RESUMEN

Selection against mismatched traits in hybrids is the phenotypic analogue of intrinsic hybrid incompatibilities. Mismatch occurs when hybrids resemble one parent population for some phenotypic traits and the other parent population for other traits, and is caused by dominance in opposing directions or from segregation of alleles in recombinant hybrids. In this study, we used threespine stickleback fish (Gasterosteus aculeatus L.) to test the theoretical prediction that trait mismatch in hybrids should increase with the magnitude of phenotypic divergence between parent populations. We measured morphological traits in parents and hybrids in crosses between a marine population representing the ancestral form and twelve freshwater populations that have diverged from this ancestral state to varying degrees according to their environments. We found that trait mismatch was greater in more divergent crosses for both F1 and F2 hybrids. In the F1, the divergence-mismatch relationship was caused by traits having dominance in different directions, whereas it was caused by increasing segregating phenotypic variation in the F2. Our results imply that extrinsic hybrid incompatibilities accumulate as phenotypic divergence proceeds.

10.
Proc Biol Sci ; 289(1966): 20211514, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34982949

RESUMEN

Why are speciation rates so variable across the tree of life? One hypothesis is that this variation is explained by how rapidly reproductive barriers evolve. We tested this hypothesis by conducting a comparative study of the evolution of bird song, a premating barrier to reproduction. Speciation in birds is typically initiated when geographically isolated (allopatric) populations evolve reproductive barriers. We measured the strength of song as a premating barrier between closely related allopatric populations by conducting 2339 field experiments to measure song discrimination for 175 taxon pairs of allopatric or parapatric New World passerine birds, and estimated recent speciation rates from molecular phylogenies. We found evidence that song discrimination is indeed an important reproductive barrier: taxon pairs with high song discrimination in allopatry did not regularly interbreed in parapatry. However, evolutionary rates of song discrimination were not associated with recent speciation rates. Evolutionary rates of song discrimination were also unrelated to latitude or elevation, but species with innate song (suboscines) evolved song discrimination much faster than species with learned song (oscines). We conclude that song is a key premating reproductive barrier in birds, but faster evolution of this reproductive barrier between populations does not consistently result in faster diversification between species.


Asunto(s)
Especiación Genética , Pájaros Cantores , Animales , Evolución Biológica , Aprendizaje , Filogenia , Reproducción
11.
PLoS Biol ; 20(1): e3001469, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007278

RESUMEN

Hybrid incompatibilities occur when interactions between opposite ancestry alleles at different loci reduce the fitness of hybrids. Most work on incompatibilities has focused on those that are "intrinsic," meaning they affect viability and sterility in the laboratory. Theory predicts that ecological selection can also underlie hybrid incompatibilities, but tests of this hypothesis using sequence data are scarce. In this article, we compiled genetic data for F2 hybrid crosses between divergent populations of threespine stickleback fish (Gasterosteus aculeatus L.) that were born and raised in either the field (seminatural experimental ponds) or the laboratory (aquaria). Because selection against incompatibilities results in elevated ancestry heterozygosity, we tested the prediction that ancestry heterozygosity will be higher in pond-raised fish compared to those raised in aquaria. We found that ancestry heterozygosity was elevated by approximately 3% in crosses raised in ponds compared to those raised in aquaria. Additional analyses support a phenotypic basis for incompatibility and suggest that environment-specific single-locus heterozygote advantage is not the cause of selection on ancestry heterozygosity. Our study provides evidence that, in stickleback, a coarse-albeit indirect-signal of environment-dependent hybrid incompatibility is reliably detectable and suggests that extrinsic incompatibilities can evolve before intrinsic incompatibilities.


Asunto(s)
Ecosistema , Hibridación Genética/genética , Smegmamorpha/genética , Animales , Femenino , Genotipo , Heterocigoto , Masculino , Selección Genética
13.
Proc Biol Sci ; 288(1950): 20203020, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33947235

RESUMEN

Global change is altering ecosystems at an unprecedented rate. The resulting shifts in species ranges and reproductive timing are opening the potential for hybridization between closely related species which could dramatically alter the genetic diversity, adaptive capacity and evolutionary trajectory of interbreeding taxa. Here, we used behavioural breeding experiments, in vitro fertilization experiments, and whole-transcriptome gene expression data to assess the potential for and consequences of hybridization between Chinook and Coho salmon. We show that behavioural and gametic prezygotic barriers between socio-economically valuable Chinook and Coho salmon are incomplete. Postzygotically, we demonstrate a clear transcriptomic response to hybridization among F1 Chinook-Coho offspring. Genes transgressively expressed within hybrids were significantly enriched with genes encoded in the nucleus but localized to the mitochondrion, suggesting a potential role for mito-nuclear incompatibilities as a postzygotic mechanism of hybrid breakdown. Chinook and Coho salmon are expected to continue to respond to climate change with shifts in migration timing and habitat use, potentiating hybridization between these species. The downstream consequences of hybridization on the future of these threatened salmon, and the ecosystems they inhabit, is unknown.


Asunto(s)
Aislamiento Reproductivo , Salmón , Animales , Ecosistema , Hibridación Genética , Salmón/genética , Transcriptoma
14.
Am Nat ; 197(5): 624, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33908833
15.
Am Nat ; 197(3): E72-E88, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33625966

RESUMEN

AbstractCompared to those of their parents, are the traits of first-generation (F1) hybrids typically intermediate, biased toward one parent, or mismatched for alternative parental phenotypes? To address this empirical gap, we compiled data from 233 crosses in which traits were measured in a common environment for two parent taxa and their F1 hybrids. We find that individual traits in F1s are halfway between the parental midpoint and one parental value. Considering pairs of traits together, a hybrid's bivariate phenotype tends to resemble one parent (parent bias) about 50% more than the other, while also exhibiting a similar magnitude of mismatch due to different traits having dominance in conflicting directions. Using data from an experimental field planting of recombinant hybrid sunflowers, we illustrate that parent bias improves fitness, whereas mismatch reduces fitness. Our study has three major conclusions. First, hybrids are not phenotypically intermediate but rather exhibit substantial mismatch. Second, dominance is likely determined by the idiosyncratic evolutionary trajectories of individual traits and populations. Finally, selection against hybrids likely results from selection against both intermediate and mismatched phenotypes.


Asunto(s)
Genes Dominantes , Aptitud Genética , Helianthus/genética , Hibridación Genética , Fenotipo , Selección Genética
16.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33414274

RESUMEN

Mutations of small effect underlie most adaptation to new environments, but beneficial variants with large fitness effects are expected to contribute under certain conditions. Genes and genomic regions having large effects on phenotypic differences between populations are known from numerous taxa, but fitness effect sizes have rarely been estimated. We mapped fitness over a generation in an F2 intercross between a marine and a lake stickleback population introduced to a freshwater pond. A quantitative trait locus map of the number of surviving offspring per F2 female detected a single, large-effect locus near Ectodysplasin (Eda), a gene having an ancient freshwater allele causing reduced bony armor and other changes. F2 females homozygous for the freshwater allele had twice the number of surviving offspring as homozygotes for the marine allele, producing a large selection coefficient, s = 0.50 ± 0.09 SE. Correspondingly, the frequency of the freshwater allele increased from 0.50 in F2 mothers to 0.58 in surviving offspring. We compare these results to allele frequency changes at the Eda gene in an Alaskan lake population colonized by marine stickleback in the 1980s. The frequency of the freshwater Eda allele rose steadily over multiple generations and reached 95% within 20 y, yielding a similar estimate of selection, s = 0.49 ± 0.05, but a different degree of dominance. These findings are consistent with other studies suggesting strong selection on this gene (and/or linked genes) in fresh water. Selection on ancient genetic variants carried by colonizing ancestors is likely to increase the prevalence of large-effect fitness variants in adaptive evolution.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Biológica , Aptitud Genética/genética , Smegmamorpha/genética , Aclimatación , Animales , Ecosistema , Frecuencia de los Genes/genética , Variación Genética/genética , Genoma/genética , Genotipo , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Agua de Mar , Smegmamorpha/fisiología
17.
Trends Ecol Evol ; 36(4): 284-293, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33353727

RESUMEN

Speciation is frequently initiated but rarely completed, a phenomenon hypothesized to arise due to the failure of nascent lineages to persist. Although a failure to persist often has ecological causes, key gaps exist between ecological and evolutionary theories that, if filled, would clarify when and why speciation succeeds or fails. Here, we apply ecological coexistence theory to show how the alignment between different forms of niche opportunity and niche use shape the initiation, progression, and completion of speciation. Niche evolution may drive coexistence or competitive exclusion, and an ability to coexist ecologically may help or hinder speciation. Our perspective allows progress towards unifying the origin and maintenance of species diversity across the tree of life.

18.
Am Nat ; 196(6): E160-E166, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33211562

RESUMEN

AbstractAre biotic interactions stronger in the tropics? Here, we investigate nest predation in birds, a canonical example of a strong tropical biotic interaction. Counter to expectations, daily rates of nest predation vary minimally with latitude. However, life-history traits that influence nest predation have diverged between latitudes. For example, tropical species have evolved a longer average nesting period, which is associated with reduced rates of nest attendance by parents. Daily nest mortality declines with nesting period length within regions, but tropical species have a higher intercept. Consequently, for the same nesting period length, tropical species experience higher daily nest predation rates than temperate species. The implication of this analysis is that the evolved difference in nesting period length between latitudes produces a flatter latitudinal gradient in daily nest predation than would otherwise be predicted. We propose that adaptation may frequently dampen geographic patterns in interaction rates.


Asunto(s)
Aves/fisiología , Geografía , Comportamiento de Nidificación , Conducta Predatoria , Américas , Animales , Clima Tropical
19.
Nat Commun ; 11(1): 1527, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32235853

RESUMEN

Species interactions are widely thought to be strongest in the tropics, potentially contributing to the greater number of species at lower latitudes. Yet, empirical tests of this "biotic interactions" hypothesis remain limited and often provide mixed results. Here, we analyze 55 years of catch per unit effort data from pelagic longline fisheries to estimate the strength of predation exerted by large predatory fish in the world's oceans. We test two central tenets of the biotic interactions hypothesis: that predation is (1) strongest near the equator, and (2) positively correlated with species richness. Counter to these predictions, we find that predation is (1) strongest in or near the temperate zone and (2) negatively correlated with oceanic fish species richness. These patterns suggest that, at least for pelagic fish predation, common assumptions about the latitudinal distribution of species interactions do not apply, thereby challenging a leading explanation for the latitudinal gradient in species diversity.


Asunto(s)
Peces/fisiología , Geografía , Conducta Predatoria/fisiología , Animales , Biodiversidad , Océanos y Mares , Filogenia , Especificidad de la Especie , Factores de Tiempo
20.
Mol Biol Evol ; 37(8): 2192-2196, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32163146

RESUMEN

Understanding why some species accumulate more deleterious substitutions than others is an important question relevant in evolutionary biology and conservation sciences. Previous studies conducted in terrestrial taxa suggest that life history traits correlate with the efficiency of purifying selection and accumulation of deleterious mutations. Using a large genome data set of 76 species of teleostean fishes, we show that species with life history traits associated with vulnerability to fishing have an increased rate of deleterious mutation accumulation (measured via dN/dS, i.e., nonsynonymous over synonymous substitution rate). Our results, focusing on a large clade of aquatic species, generalize previous patterns found so far in few clades of terrestrial vertebrates. These results also show that vulnerable species to fishing inherently accumulate more deleterious substitutions than nonthreatened ones, which illustrates the potential links among population genetics, ecology, and fishing policies to prevent species extinction.


Asunto(s)
Explotaciones Pesqueras , Peces/genética , Rasgos de la Historia de Vida , Acumulación de Mutaciones , Animales , Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA