Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 63
1.
Cancers (Basel) ; 16(3)2024 Jan 30.
Article En | MEDLINE | ID: mdl-38339332

Microbeam radiation therapy (MRT) is a still pre-clinical form of spatially fractionated radiotherapy, which uses an array of micrometer-wide, planar beams of X-ray radiation. The dose modulation in MRT has proven effective in the treatment of tumors while being well tolerated by normal tissue. Research on understanding the underlying biological mechanisms mostly requires large third-generation synchrotrons. In this study, we aimed to develop a preclinical treatment environment that would allow MRT independent of synchrotrons. We built a compact microbeam setup for pre-clinical experiments within a small animal irradiator and present in vivo MRT application, including treatment planning, dosimetry, and animal positioning. The brain of an immobilized mouse was treated with MRT, excised, and immunohistochemically stained against γH2AX for DNA double-strand breaks. We developed a comprehensive treatment planning system by adjusting an existing dose calculation algorithm to our setup and attaching it to the open-source software 3D-Slicer. Predicted doses in treatment planning agreed within 10% with film dosimetry readings. We demonstrated the feasibility of MRT exposures in vivo at a compact source and showed that the microbeam pattern is observable in histological sections of a mouse brain. The platform developed in this study will be used for pre-clinical research of MRT.

2.
Sci Rep ; 14(1): 1418, 2024 01 16.
Article En | MEDLINE | ID: mdl-38228747

FLASH-radiotherapy may provide significant sparing of healthy tissue through ultra-high dose rates in protons, electrons, and x-rays while maintaining the tumor control. Key factors for the FLASH effect might be oxygen depletion, the immune system, and the irradiated blood volume, but none could be fully confirmed yet. Therefore, further investigations are necessary. We investigated the protective (tissue sparing) effect of FLASH in proton treatment using an in-vivo mouse ear model. The right ears of Balb/c mice were irradiated with 20 MeV protons at the ion microprobe SNAKE in Garching near Munich by using three dose rates (Conv = 0.06 Gy/s, Flash9 = 9.3 Gy/s and Flash930 = 930 Gy/s) at a total dose of 23 Gy or 33 Gy. The ear thickness, desquamation, and erythema combined in an inflammation score were measured for 180 days. The cytokines TGF-ß1, TNF-α, IL1α, and IL1ß were analyzed in the blood sampled in the first 4 weeks and at termination day. No differences in inflammation reactions were visible in the 23 Gy group for the different dose rates. In the 33 Gy group, the ear swelling and the inflammation score for Flash9 was reduced by (57 ± 12) % and (67 ± 17) % and for Flash930 by (40 ± 13) % and (50 ± 17) % compared to the Conv dose rate. No changes in the cytokines in the blood could be measured. However, an estimation of the irradiated blood volume demonstrates, that 100-times more blood is irradiated when using Conv compared to using Flash9 or Flash930. This indicates that blood might play a role in the underlying mechanisms in the protective effect of FLASH.


Neoplasms , Protons , Animals , Mice , Ear , Inflammation , Cytokines , Radiotherapy Dosage
3.
iScience ; 26(9): 107683, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37680485

Magnetic nanoparticles can be functionalized in many ways for biomedical applications. Here, we combine four advantageous features in a novel Fe-Pt-Yb2O3 core-shell nanoparticle. (a) The nanoparticles have a size of 10 nm allowing them to diffuse through neuronal tissue. (b) The particles are superparamagnetic after synthesis and ferromagnetic after annealing, enabling directional control by magnetic fields, enhance NMRI contrast, and hyperthermia treatment. (c) After neutron-activation of the shell, they carry low-energetic, short half-life ß-radiation from 175Yb, 177Yb, and 177Lu. (d) Additionally, the particles can be optically visualized by plasmonic excitation and luminescence. To demonstrate the potential of the particles for cancer treatment, we exposed cultured human glioblastoma cells (LN-18) to non-activated and activated particles to confirm that the particles are internalized, and that the ß-radiation of the radioisotopes incorporated in the neutron-activated shell of the nanoparticles kills more than 98% of the LN-18 cancer cells, promising for future anti-cancer applications.

4.
J Pathol ; 258(2): 189-198, 2022 10.
Article En | MEDLINE | ID: mdl-35830288

Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy. However, structured knowledge to mitigate a patient's specific risk of developing adverse events are limited. Nevertheless, there is an exponential growth of clinical studies combining conventional therapies such as radiation therapy (RT) with ICIs. Cutaneous reactions are among the most common adverse events after monotherapy with either ICIs or RT. So far, little is known about interindividual differences for the risk of developing severe tissue toxicity after the combination of RT with ICIs, and the underlying biological mechanisms are ill defined. We used experimental models of RT-induced skin injury to analyze skin toxicity after simultaneous application of ICIs. We compared different RT regimens such as fractionated or stereotactic RT with varying dose intensity. Strikingly, we found that simultaneous application of RT and ICIs did not significantly aggravate acute skin injury in two different mouse strains. Detailed examination of long-term tissue damage of the skin revealed similar signs of epidermal hyperplasia, dermal fibrosis, and adnexal atrophy. In summary, we here present the first experimental study demonstrating the excellent safety profiles of concurrent treatment with RT and ICIs. These findings will help to interpret the development of adverse events of the skin after radioimmunotherapy and guide the design of new clinical trials and clinical decision-making in individual cases. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Immune Checkpoint Inhibitors , Skin Diseases , Animals , Mice , Skin , United Kingdom
6.
Cancers (Basel) ; 13(22)2021 Nov 12.
Article En | MEDLINE | ID: mdl-34830813

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers. Innovative treatment concepts may enhance oncological outcome. Clinically relevant tumor models are essential in developing new therapeutic strategies. In the present study, we used two human PDAC cell lines for an orthotopic xenograft mouse model and compared treatment characteristics between this in vivo tumor model and PDAC patients. Tumor-bearing mice received stereotactic high-precision irradiation using arc technique after 3D-treatment planning. Induction of DNA damage in tumors and organs at risk (OARs) was histopathologically analyzed by the DNA damage marker γH2AX and compared with results after unprecise whole-abdomen irradiation. Our mouse model and preclinical setup reflect the characteristics of PDAC patients and clinical RT. It was feasible to perform stereotactic high-precision RT after defining tumor and OARs by CT imaging. After stereotactic RT, a high rate of DNA damage was mainly observed in the tumor but not in OARs. The calculated dose distributions and the extent of the irradiation field correlate with histopathological staining and the clinical example. We established and validated 3D-planned stereotactic RT in an orthotopic PDAC mouse model, which reflects the human RT. The efficacy of the whole workflow of imaging, treatment planning, and high-precision RT was proven by longitudinal analysis showing a significant improved survival. Importantly, this model can be used to analyze tumor regression and therapy-related toxicity in one model and will allow drawing clinically relevant conclusions.

7.
Phys Imaging Radiat Oncol ; 20: 11-16, 2021 Oct.
Article En | MEDLINE | ID: mdl-34611553

BACKGROUND AND PURPOSE: Radiotherapy of thoracic tumours can lead to side effects in the lung, which may benefit from early diagnosis. We investigated the potential of X-ray dark-field computed tomography by a proof-of-principle murine study in a clinically relevant radiotherapeutic setting aiming at the detection of radiation-induced lung damage. MATERIAL AND METHODS: Six mice were irradiated with 20 Gy to the entire right lung. Together with five unirradiated control mice, they were imaged using computed tomography with absorption and dark-field contrast before and 16 weeks post irradiation. Mean pixel values for the right and left lung were calculated for both contrasts, and the right-to-left-ratio R of these means was compared. Radiologists also assessed the tomograms acquired 16 weeks post irradiation. Sensitivity, specificity, inter- and intra-reader accuracy were evaluated. RESULTS: In absorption contrast the group-average of R showed no increase in the control group and increased by 7% (p = 0.005) in the irradiated group. In dark-field contrast, it increased by 2% in the control group and by 14% (p = 0.005) in the irradiated group. Specificity was 100% for both contrasts but sensitivity was almost four times higher using dark-field tomography. Two cases were missed by absorption tomography but were detected by dark-field tomography. CONCLUSIONS: The applicability of X-ray dark-field computed tomography for the detection of radiation-induced lung damage was demonstrated in a pre-clinical mouse model. The presented results illustrate the differences between dark-field and absorption contrast and show that dark-field tomography could be advantageous in future clinical settings.

8.
Int J Mol Sci ; 22(13)2021 Jun 24.
Article En | MEDLINE | ID: mdl-34202589

BACKGROUND: Treatment resistance of glioblastoma multiforme to chemo- and radiotherapy remains a challenge yet to overcome. In particular, the O6-methylguanine-DNA-methyltransferase (MGMT) promoter unmethylated patients have only little benefit from chemotherapy treatment using temozolomide since MGMT counteracts its therapeutic efficacy. Therefore, new treatment options in radiotherapy need to be developed to inhibit MGMT and increase radiotherapy response. METHODS: Lomeguatrib, a highly specific MGMT inhibitor, was used to inactivate MGMT protein in vitro. Radiosensitivity of established human glioblastoma multiforme cell lines in combination with lomeguatrib was investigated using the clonogenic survival assay. Inhibition of MGMT was analyzed using Western Blot. Cell cycle distribution and apoptosis were investigated to determine the effects of lomeguatrib alone as well as in combination with ionizing radiation. RESULTS: Lomeguatrib significantly decreased MGMT protein and reduced radiation-induced G2/M arrest. A radiosensitizing effect of lomeguatrib was observed when administered at 1 µM and increased radioresistance at 20 µM. CONCLUSION: Low concentrations of lomeguatrib elicit radiosensitization, while high concentrations mediate a radioprotective effect.


DNA Methylation/drug effects , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Glioblastoma/genetics , Purines/pharmacology , Radiation Tolerance/drug effects , Radiation Tolerance/genetics , Tumor Suppressor Proteins/genetics , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , DNA Modification Methylases/metabolism , DNA Repair Enzymes/metabolism , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , G2 Phase Cell Cycle Checkpoints/drug effects , Glioblastoma/metabolism , Humans , Tumor Suppressor Proteins/metabolism
9.
Radiother Oncol ; 159: 265-276, 2021 06.
Article En | MEDLINE | ID: mdl-33839203

PURPOSE: Radioresistance in pancreatic cancer patients remains a critical obstacle to overcome. Understanding the molecular mechanisms underlying radioresistance may achieve better response to radiotherapy and thereby improving the poor treatment outcome. The aim of the present study was to elucidate the mechanisms leading to radioresistance by detailed characterization of isogenic radioresistant and radiosensitive cell lines. METHODS: The human pancreatic cancer cell lines, Panc-1 and MIA PaCa-2 were repeatedly exposed to radiation to generate radioresistant (RR) isogenic cell lines. The surviving cells were expanded, and their radiosensitivity was measured using colony formation assay. Tumor growth delay after irradiation was determined in a mouse pancreatic cancer xenograft model. Gene and protein expression were analyzed using RNA sequencing and Western blot, respectively. Cell cycle distribution and apoptosis (Caspase 3/7) were measured by FACS analysis. Reactive oxygen species generation and DNA damage were analyzed by detection of CM-H2DCFDA and γH2AX staining, respectively. Transwell chamber assays were used to investigate cell migration and invasion. RESULTS: The acquired radioresistance of RR cell lines was demonstrated in vitro and validated in vivo. Ingenuity pathway analysis of RNA sequencing data predicted activation of cell viability in both RR cell lines. RR cancer cell lines demonstrated greater DNA repair efficiency and lower basal and radiation-induced reactive oxygen species levels. Migration and invasion were differentially affected in RR cell lines. CONCLUSIONS: Our data indicate that repeated exposure to irradiation increases the expression of genes involved in cell viability and thereby leads to radioresistance. Mechanistically, increased DNA repair capacity and reduced oxidative stress might contribute to the radioresistant phenotype.


Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms , Animals , Apoptosis , Cell Line, Tumor , DNA Repair , Humans , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/radiotherapy , Radiation Tolerance/genetics , Reactive Oxygen Species
11.
Int J Radiat Oncol Biol Phys ; 109(2): 626-636, 2021 02 01.
Article En | MEDLINE | ID: mdl-33038461

PURPOSE: Microbeam radiation therapy is a preclinical concept in radiation oncology. It spares normal tissue more effectively than conventional radiation therapy at equal tumor control. The radiation field consists of peak regions with doses of several hundred gray, whereas doses between the peaks (valleys) are below the tissue tolerance level. Widths and distances of the beams are in the submillimeter range for microbeam radiation therapy. A similar alternative concept with beam widths and distances in the millimeter range is presented by minibeam radiation therapy. Although both methods were developed at large synchrotron facilities, compact alternative sources have been proposed recently. METHODS AND MATERIALS: A small-animal irradiator was fitted with a special 3-layered collimator that is used for preclinical research and produces microbeams of flexible width of up to 100 µm. Film dosimetry provided measurements of the dose distributions and was compared with Monte Carlo dose predictions. Moreover, the micronucleus assay in Chinese hamster CHO-K1 cells was used as a biological dosimeter. The focal spot size and beam emission angle of the x-ray tube were modified to optimize peak dose rate, peak-to-valley dose ratio (PVDR), beam shape, and field homogeneity. An equivalent collimator with slit widths of up to 500 µm produced minibeams and allowed for comparison of microbeam and minibeam field characteristics. RESULTS: The setup achieved peak entrance dose rates of 8 Gy/min and PVDRs >30 for microbeams. Agreement between Monte Carlo simulations and film dosimetry is generally better for larger beam widths; qualitative measurements validated Monte Carlo predicted results. A smaller focal spot enhances PVDRs and reduces beam penumbras but substantially reduces the dose rate. A reduction of the beam emission angle improves the PVDR, beam penumbras, and dose rate without impairing field homogeneity. Minibeams showed similar field characteristics compared with microbeams at the same ratio of beam width and distance but had better agreement with simulations. CONCLUSION: The developed setup is already in use for in vitro experiments and soon for in vivo irradiations. Deviations between Monte Carlo simulations and film dosimetry are attributed to scattering at the collimator surface and manufacturing inaccuracies and are a matter of ongoing research.


Radiation Oncology/methods , Animals , CHO Cells , Cricetulus , Film Dosimetry , Monte Carlo Method , Radiation Oncology/instrumentation , Radiotherapy Dosage , Time Factors
12.
Eur Radiol ; 31(6): 4175-4183, 2021 Jun.
Article En | MEDLINE | ID: mdl-33211140

OBJECTIVE: Assessing the advantage of x-ray dark-field contrast over x-ray transmission contrast in radiography for the detection of developing radiation-induced lung damage in mice. METHODS: Two groups of female C57BL/6 mice (irradiated and control) were imaged obtaining both contrasts monthly for 28 weeks post irradiation. Six mice received 20 Gy of irradiation to the entire right lung sparing the left lung. The control group of six mice was not irradiated. A total of 88 radiographs of both contrasts were evaluated for both groups based on average values for two regions of interest, covering (irradiated) right lung and healthy left lung. The ratio of these average values, R, was distinguished between healthy and damaged lungs for both contrasts. The time-point when deviations of R from healthy lung exceeded 3σ was determined and compared among contrasts. The Wilcoxon-Mann-Whitney test was used to test against the null hypothesis that there is no difference between both groups. A selection of 32 radiographs was assessed by radiologists. Sensitivity and specificity were determined in order to compare the diagnostic potential of both contrasts. Inter-reader and intra-reader accuracy were rated with Cohen's kappa. RESULTS: Radiation-induced morphological changes of lung tissue caused deviations from the control group that were measured on average 10 weeks earlier with x-ray dark-field contrast than with x-ray transmission contrast. Sensitivity, specificity, and accuracy doubled using dark-field radiography. CONCLUSION: X-ray dark-field radiography detects morphological changes of lung tissue associated with radiation-induced damage earlier than transmission radiography in a pre-clinical mouse model. KEY POINTS: • Significant deviations from healthy lung due to irradiation were measured after 16 weeks with x-ray dark-field radiography (p = 0.004). • Significant deviations occur on average 10 weeks earlier for x-ray dark-field radiography in comparison to x-ray transmission radiography. • Sensitivity and specificity doubled when using x-ray dark-field radiography instead of x-ray transmission radiography.


Lung , Animals , Female , Lung/diagnostic imaging , Mice , Mice, Inbred C57BL , Radiography , Sensitivity and Specificity , X-Rays
13.
Int J Radiat Biol ; 97(2): 256-264, 2021.
Article En | MEDLINE | ID: mdl-33211606

PURPOSE: The MSc Radiation Biology course is a highly interdisciplinary degree program placing radiation biology at the interface between biology, medicine, and physics, as well as their associated technologies. The goal was to establish an internationally acknowledged program with diverse and heterogeneous student cohorts, who benefit from each other academically as well as culturally. We have completed a Five-Year evaluation of the program to assess our qualification profile and the further direction we want to take. MATERIALS AND METHODS: We evaluated the student cohort's data from the last 5 years regarding gender, age, and nationality as well as the highest degree before applying and career path after graduation. RESULTS: Data shows a great diversity regarding nationalty as well as undergraduate background. Cohort sizes could be increased and future prospects mainly aimed to a PhD. Measures after regular quality meetings and students' feedback led to improving the curriculum and workload, teacher's training, and changes to examination regulations. CONCLUSIONS: After 5 years, statistics show that our expectations have been met exceedingly. All graduates had excellent career opportunities reflecting the necessity of this MSc and its topics. We are continuously working on improving the program and adapting the curriculum to the requirements in radiation sciences. The future vision includes an expansion of the program as well as undergraduate education opportunities in this field.


Radiobiology/education , Adult , Curriculum , Female , Humans , Male
14.
Int J Radiat Oncol Biol Phys ; 109(1): 76-83, 2021 01 01.
Article En | MEDLINE | ID: mdl-32805301

PURPOSE: Proton minibeam radiation therapy, a spatial fractionation concept, widens the therapeutic window. By reducing normal tissue toxicities, it allows a temporally fractionated regime with high daily doses. However, an array shift between daily fractions can affect the tissue-sparing effect by decreasing the total peak-to-valley dose ratio. Therefore, combining temporal fractions with spatial fractionation raises questions about the impact of daily applied dose modulations, reirradiation accuracies, and total dose modulations. METHODS AND MATERIALS: Healthy mouse ear pinnae were irradiated with 4 daily fractions of 30 Gy mean dose, applying proton pencil minibeams (pMB) of Gaussian σ = 222 µm in 3 different schemes: a 16 pMB array with a center-to-center distance of 1.8 mm irradiated the same position in all sessions (FS1) or was shifted by 0.9 mm to never hit the previously irradiated tissue in each session (FS2), or a 64 pMB array with a center-to-center distance of 0.9 mm irradiated the same position in all sessions (FS3), resulting in the same total dose distribution as FS2. Reirradiation positioning and its accuracy were obtained from image guidance using the unique vessel structure of ears. Acute toxicities (swelling, erythema, and desquamation) were evaluated for 153 days after the first fraction. Late toxicities (fibrous tissue, inflammation) were analyzed on day 153. RESULTS: Reirradiation of highly dose-modulated arrays at a positioning accuracy of 110 ± 52 µm induced the least severe acute and late toxicities. A shift of the same array in FS2 led to significantly inducted acute toxicities, a higher otitis score, and a slight increase in fibrous tissue. FS3 led to the strongest increase in acute and late toxicities. CONCLUSIONS: The highest normal-tissue sparing is achieved after accurate reirradiation of a highly dose modulated pMB array, although high positioning accuracies are challenging in a clinical environment. Nevertheless, the same integral dose applied in highly dose-modulated fractions is superior to low daily dose-modulated fractions.


Proton Therapy/adverse effects , Spatio-Temporal Analysis , Animals , Dose-Response Relationship, Radiation , Ear/radiation effects , Mice
15.
Cancers (Basel) ; 12(12)2020 Dec 09.
Article En | MEDLINE | ID: mdl-33317198

Today, pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide with a five-year overall survival rate of less than 7%. Only 15-20% of patients are eligible for curative intent surgery at the time of diagnosis. Therefore, neoadjuvant treatment regimens have been introduced in order to downsize the tumor by chemotherapy and radiotherapy. To further increase the efficacy of radiotherapy, novel molecular biomarkers are urgently needed to define the subgroup of pancreatic cancer patients who would benefit most from radiotherapy. MicroRNAs (miRNAs) could have the potential to serve as novel predictive and prognostic biomarkers in patients with pancreatic cancer. In the present article, the role of miRNAs as blood biomarkers, which are associated with either radioresistance or radiation-induced changes of miRNAs in pancreatic cancer, is discussed. Furthermore, the manuscript provides own data of miRNAs identified in a pancreatic cancer mouse model as well as radiation-induced miRNA changes in the plasma of tumor-bearing mice.

17.
Med Phys ; 47(10): 5183-5193, 2020 Oct.
Article En | MEDLINE | ID: mdl-32757280

PURPOSE: X-ray microbeam radiation therapy is a preclinical concept for tumor treatment promising tissue sparing and enhanced tumor control. With its spatially separated, periodic micrometer-sized pattern, this method requires a high dose rate and a collimated beam typically available at large synchrotron radiation facilities. To treat small animals with microbeams in a laboratory-sized environment, we developed a dedicated irradiation system at the Munich Compact Light Source (MuCLS). METHODS: A specially made beam collimation optic allows to increase x-ray fluence rate at the position of the target. Monte Carlo simulations and measurements were conducted for accurate microbeam dosimetry. The dose during irradiation is determined by a calibrated flux monitoring system. Moreover, a positioning system including mouse monitoring was built. RESULTS: We successfully commissioned the in vivo microbeam irradiation system for an exemplary xenograft tumor model in the mouse ear. By beam collimation, a dose rate of up to 5.3 Gy/min at 25 keV was achieved. Microbeam irradiations using a tungsten collimator with 50 µm slit size and 350 µm center-to-center spacing were performed at a mean dose rate of 0.6 Gy/min showing a high peak-to-valley dose ratio of about 200 in the mouse ear. The maximum circular field size of 3.5 mm in diameter can be enlarged using field patching. CONCLUSIONS: This study shows that we can perform in vivo microbeam experiments at the MuCLS with a dedicated dosimetry and positioning system to advance this promising radiation therapy method at commercially available compact microbeam sources. Peak doses of up to 100 Gy per treatment seem feasible considering a recent upgrade for higher photon flux. The system can be adapted for tumor treatment in different animal models, for example, in the hind leg.


Radiometry , X-Ray Therapy , Animals , Mice , Monte Carlo Method , Synchrotrons , X-Rays
18.
Cancers (Basel) ; 12(5)2020 Apr 28.
Article En | MEDLINE | ID: mdl-32354046

Glioblastoma multiforme (GBM) is the most common high-grade intracranial tumor in adults. It is characterized by uncontrolled proliferation, diffuse infiltration due to high invasive and migratory capacities, as well as intense resistance to chemo- and radiotherapy. With a five-year survival of less than 3% and an average survival rate of 12 months after diagnosis, GBM has become a focus of current research to urgently develop new therapeutic approaches in order to prolong survival of GBM patients. The methylation status of the promoter region of the O6-methylguanine-DNA methyltransferase (MGMT) is nowadays routinely analyzed since a methylated promoter region is beneficial for an effective response to temozolomide-based chemotherapy. Furthermore, several miRNAs were identified regulating MGMT expression, apart from promoter methylation, by degrading MGMT mRNA before protein translation. These miRNAs could be a promising innovative treatment approach to enhance Temozolomide (TMZ) sensitivity in MGMT unmethylated patients and to increase progression-free survival as well as long-term survival. In this review, the relevant miRNAs are systematically reviewed.

19.
Radiat Environ Biophys ; 59(1): 111-120, 2020 03.
Article En | MEDLINE | ID: mdl-31655869

Microbeam radiation therapy (MRT), a preclinical form of spatially fractionated radiotherapy, uses an array of microbeams of hard synchrotron X-ray radiation. Recently, compact synchrotron X-ray sources got more attention as they provide essential prerequisites for the translation of MRT into clinics while overcoming the limited access to synchrotron facilities. At the Munich compact light source (MuCLS), one of these novel compact X-ray facilities, a proof of principle experiment was conducted applying MRT to a xenograft tumor mouse model. First, subcutaneous tumors derived from the established squamous carcinoma cell line FaDu were irradiated at a conventional X-ray tube using broadbeam geometry to determine a suitable dose range for the tumor growth delay. For irradiations at the MuCLS, FaDu tumors were irradiated with broadbeam and microbeam irradiation at integral doses of either 3 Gy or 5 Gy and tumor growth delay was measured. Microbeams had a width of 50 µm and a center-to-center distance of 350 µm with peak doses of either 21 Gy or 35 Gy. A dose rate of up to 5 Gy/min was delivered to the tumor. Both doses and modalities delayed the tumor growth compared to a sham-irradiated tumor. The irradiated area and microbeam pattern were verified by staining of the DNA double-strand break marker γH2AX. This study demonstrates for the first time that MRT can be successfully performed in vivo at compact inverse Compton sources.


Neoplasms/radiotherapy , Synchrotrons , Animals , Cell Line, Tumor , Female , Histones/metabolism , Humans , Mice, Nude , Neoplasms/metabolism , Neoplasms/pathology , X-Rays
20.
PLoS One ; 14(11): e0224873, 2019.
Article En | MEDLINE | ID: mdl-31765436

Proton radiotherapy using minibeams of sub-millimeter dimensions reduces side effects in comparison to conventional proton therapy due to spatial fractionation. Since the proton minibeams widen with depth, the homogeneous irradiation of a tumor can be ensured by adjusting the beam distances to tumor size and depth to maintain tumor control as in conventional proton therapy. The inherent advantages of protons in comparison to photons like a limited range that prevents a dosage of distal tissues are maintained by proton minibeams and can even be exploited for interlacing from different beam directions. A first animal study was conducted to systematically investigate and quantify the tissue-sparing effects of proton pencil minibeams as a function of beam size and dose distributions, using beam widths between σ = 95, 199, 306, 411, 561 and 883 µm (standard deviation) at a defined center-to-center beam distance (ctc) of 1.8 mm. The average dose of 60 Gy was distributed in 4x4 minibeams using 20 MeV protons (LET ~ 2.7 keV/µm). The induced radiation toxicities were measured by visible skin reactions and ear swelling for 90 days after irradiation. The largest applied beam size to ctc ratio (σ/ctc = 0.49) is similar to a homogeneous irradiation and leads to a significant 3-fold ear thickness increase compared to the control group. Erythema and desquamation was also increased significantly 3-4 weeks after irradiation. With decreasing beam sizes and thus decreasing σ/ctc, the maximum skin reactions are strongly reduced until no ear swelling or other visible skin reactions should occur for σ/ctc < 0.032 (extrapolated from data). These results demonstrate that proton pencil minibeam radiotherapy has better tissue-sparing for smaller σ/ctc, corresponding to larger peak-to-valley dose ratios PVDR, with the best effect for σ/ctc < 0.032. However, even quite large σ/ctc (e.g. σ/ctc = 0.23 or 0.31, i.e. PVDR = 10 or 2.7) show less acute side effects than a homogeneous dose distribution. This suggests that proton minibeam therapy spares healthy tissue not only in the skin but even for dose distributions appearing in deeper layers close to the tumor enhancing its benefits for clinical proton therapy.


Ear/radiation effects , Organ Sparing Treatments , Protons , Animals , Cell Survival/radiation effects , Clone Cells , Dose-Response Relationship, Radiation , Keratinocytes/radiation effects , Mice, Inbred BALB C , Skin/radiation effects
...