Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Adv Biosyst ; 4(11): e2000153, 2020 11.
Article En | MEDLINE | ID: mdl-33084207

Giant unilamellar lipid vesicles (GUVs) are widely used as model membrane systems and provide an excellent basis to construct artificial cells. To construct more sophisticated artificial cells, proteins-in particular membrane proteins-need to be incorporated in GUVs. However, current methods for protein reconstitution have limited throughput or are not generally applicable for all proteins because they depend on detergent solubilization. This limitation is addressed here by introducing calcium-mediated membrane fusion to transfer proteins between negatively charged GUVs and cell-derived plasma membrane vesicles (CDVs), derived from HEK293T cells overexpressing a membrane receptor protein. Fusion conditions are optimized using large unilamellar vesicles and GUVs containing phosphatidylserines and fusogenic lipids. The approach is then applied to induce lipid mixing and subsequent transfer of the overexpressed membrane receptor from CDVs into GUVs. The membrane receptor is detected by immunofluorescence on GUVs that underwent lipid mixing with CDVs. Those GUVs also exhibit esterase activity because cytosolic esterases entrapped in the CDVs are transferred during membrane fusion. Thus, content mixing is demonstrated. Using CDVs circumvents the need to purify or solubilize proteins. Moreover, calcium-mediated fusion allows transfer of lipids, water-soluble and membrane bound proteins in one step, resulting in a semi-synthetic cell.


Cell Engineering/methods , Cytosol/chemistry , Membrane Fusion/drug effects , Proteins/chemistry , Unilamellar Liposomes , Artificial Cells/chemistry , Artificial Cells/cytology , Calcium/pharmacology , HEK293 Cells , Humans
2.
Adv Biosyst ; 4(11): e2000146, 2020 11.
Article En | MEDLINE | ID: mdl-32875708

Pulsed electromagnetic fields (PEMFs) are capable of specifically activating a TRPC1-mitochondrial axis underlying cell expansion and mitohormetic survival adaptations. This study characterizes cell-derived vesicles (CDVs) generated from C2C12 murine myoblasts and shows that they are equipped with the sufficient molecular machinery to confer mitochondrial respiratory capacity and associated proliferative responses upon their fusion with recipient cells. CDVs derived from wild type C2C12 myoblasts include the cation-permeable transient receptor potential (TRP) channels, TRPC1 and TRPA1, and directly respond to PEMF exposure with TRPC1-mediated calcium entry. By contrast, CDVs derived from C2C12 muscle cells in which TRPC1 has been genetically knocked-down using CRISPR/Cas9 genome editing, do not. Wild type C2C12-derived CDVs are also capable of restoring PEMF-induced proliferative and mitochondrial activation in two C2C12-derived TRPC1 knockdown clonal cell lines in accordance to their endogenous degree of TRPC1 suppression. C2C12 wild type CDVs respond to menthol with calcium entry and accumulation, likewise verifying TRPA1 functional gating and further corroborating compartmental integrity. Proteomic and lipidomic analyses confirm the surface membrane origin of the CDVs providing an initial indication of the minimal cellular machinery required to recover mitochondrial function. CDVs hence possess the potential of restoring respiratory and proliferative capacities to senescent cells and tissues.


Cell Proliferation/drug effects , Drug Delivery Systems/methods , Mitochondria/drug effects , TRPC Cation Channels , Animals , CRISPR-Cas Systems , Cell Line , Cell-Derived Microparticles/metabolism , Gene Editing , Mice , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , TRPC Cation Channels/pharmacokinetics , TRPC Cation Channels/pharmacology
3.
ACS Appl Mater Interfaces ; 11(38): 34698-34706, 2019 Sep 25.
Article En | MEDLINE | ID: mdl-31454223

We present an optimized protocol to encapsulate bacteria inside giant unilamellar lipid vesicles combined with a microfluidic platform for real-time monitoring of microbial growth and production. The microfluidic device allows us to immobilize the lipid vesicles and record bacterial growth and production using automated microscopy. Moreover, the lipid vesicles retain hydrophilic molecules and therefore can be used to accumulate products of microbial biosynthesis, which we demonstrate here for a riboflavin-producing bacterial strain. We show that stimulation as well as inhibition of bacterial production can be performed through the liposomal membrane simply by passive diffusion of inducing or antibiotic compounds, respectively. The possibility to introduce as well as accumulate compounds in liposomal cultivation compartments represents great advantage over the current state of the art systems, emulsion droplets, and gel beads. Additionally, the encapsulation of bacteria and monitoring of individual lipid vesicles have been accomplished on a single microfluidic device. The presented system paves the way toward highly parallel microbial cultivation and monitoring as required in biotechnology, basic research, or drug discovery.


Escherichia coli K12/growth & development , Lab-On-A-Chip Devices , Unilamellar Liposomes/chemistry , Emulsions , Escherichia coli K12/cytology
4.
Anal Chem ; 89(10): 5484-5493, 2017 05 16.
Article En | MEDLINE | ID: mdl-28415842

A spectrophotometric assay for the determination of horseradish peroxidase (HRP) in aqueous solution with p-phenylenediamine (PPD, benzene-1,4-diamine) as electron donor substrate and hydrogen peroxide (H2O2) as oxidant was developed. The oxidation of PPD by HRP/H2O2 leads to the formation of Bandrowski's base ((3E,6E)-3,6-bis[(4-aminophenyl)imino]cyclohexa-1,4-diene-1,4-diamine), which can be quantified by following the increase in absorbance at 500 nm. The assay was applied for monitoring the activity of HRP inside ≈180 nm-sized lipid vesicles (liposomes), prepared from POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and purified by size exclusion chromatography. Because of the high POPC bilayer permeability of PPD and H2O2, the HRP-catalyzed oxidation of PPD occurs inside the vesicles once PPD and H2O2 are added to the vesicle suspension. In contrast, if instead of PPD the bilayer-impermeable substrate ABTS2- (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate)) is used, the oxidation of ABTS2- inside the vesicles does not occur. Therefore, using PPD and ABTS2- in separate assays allows distinguishing between vesicle-trapped HRP and HRP in the external bulk solution. In this way, the storage stability of HRP-containing POPC vesicles was investigated in terms of HRP leakage and activity of entrapped HRP. It was found that pH 7.0 suspensions of POPC vesicles (2.2 mM POPC) containing on average about 12 HRP molecules per vesicle are stable for at least 1 month without any significant HRP leakage, if stored at 4 °C. Such high stability is beneficial not only for bioanalytical applications but also for exploring the kinetic properties of vesicle-entrapped HRP through simple spectrophotometric absorption measurements with PPD as a sensitive and cheap substrate.


Horseradish Peroxidase/analysis , Liposomes/chemistry , Phenylenediamines/chemistry , Spectrophotometry , Benzothiazoles/chemistry , Biocatalysis , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Kinetics , Mass Spectrometry , Oxidation-Reduction , Phenylenediamines/metabolism , Phosphatidylcholines/chemistry , Protein Stability , Sulfonic Acids/chemistry
5.
Microsyst Nanoeng ; 2: 16022, 2016.
Article En | MEDLINE | ID: mdl-31057823

Microfluidics is becoming a technology of growing interest for building microphysiological systems with integrated read-out functionalities. Here we present the integration of enzyme-based multi-analyte biosensors into a multi-tissue culture platform for 'body-on-a-chip' applications. The microfluidic platform is based on the technology of hanging-drop networks, which is designed for the formation, cultivation, and analysis of fluidically interconnected organotypic spherical three-dimensional (3D) microtissues of multiple cell types. The sensor modules were designed as small glass plug-ins featuring four platinum working electrodes, a platinum counter electrode, and an Ag/AgCl reference electrode. They were placed directly into the ceiling substrate from which the hanging drops that host the spheroid cultures are suspended. The electrodes were functionalized with oxidase enzymes to enable continuous monitoring of lactate and glucose through amperometry. The biosensors featured high sensitivities of 322±41 nA mM-1 mm-2 for glucose and 443±37 nA mM-1 mm-2 for lactate; the corresponding limits of detection were below 10 µM. The proposed technology enabled tissue-size-dependent, real-time detection of lactate secretion from single human colon cancer microtissues cultured in the hanging drops. Furthermore, glucose consumption and lactate secretion were monitored in parallel, and the impact of different culture conditions on the metabolism of cancer microtissues was recorded in real-time.

6.
ACS Sens ; 1(8): 1028-1035, 2016 Jul 18.
Article En | MEDLINE | ID: mdl-33851029

Electrical impedance spectroscopy (EIS) as a label free and noninvasive analysis method receives growing attention for monitoring three-dimensional tissue constructs. In this Article, we present the integration of an EIS readout function into the hanging-drop network platform, which has been designed for culturing microtissue spheroids in perfused multitissue configurations. Two pairs of microelectrodes have been implemented directly in the support of the hanging drops by using a small glass inlay inserted in the microfluidic structure. The pair of bigger electrodes is sensitive to the drop size and allows for drop size control over time. The pair of smaller electrodes is capable of monitoring, on the one hand, the size of microtissue spheroids to follow, for example, the growth of cancer microtissues, and, on the other hand, the beating of cardiac microtissues in situ. The presented results demonstrate the feasibility of an EIS readout within the framework of multifunctional hanging-drop networks.

...