Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 189
1.
Philos Trans A Math Phys Eng Sci ; 382(2273): 20230208, 2024 Jun 09.
Article En | MEDLINE | ID: mdl-38736336

The selected ice nanoparticle accelerator, SELINA, was used to prepare beams of single ice particles with positive or negative charge. Positively charged particles were prepared from deionized water and 0.05-0.2 molar solutions of sodium chloride in water, and negatively charged ice particles were generated from water without salt. Depending on the electrospray source configuration, the measured particles vary from 50 to 1000 nm in diameter. The kinetic energy per charge for all particles was set to 200 eV by the collisional equilibration in quadrupoles, which resulted in primary velocities up to 600 m/s for the lowest m/z particles. The electrospray ionization and thus particle formation from SELINA become less efficient with increasing salt concentration, resulting in a lower detected particle frequency and size. Good instrument operation is achievable for concentrations below 0.2 M. After we have verified and characterized positively and negatively charged ice particles, we have combined SELINA with a target and time-of-flight spectrometer for a 'proof-of-principle' post acceleration of 120 nm particles towards hypervelocity (v ~ 3000 m/s) and detection of fragments from the particle impact (SELINA-HIMS). General conditions are discussed for the acceleration of particles between 50 and 1000 nm to velocities well above 3000 m/s with SELINA-HIMS instrument. This article is part of the theme issue 'Dust in the Solar System and beyond'.

2.
Philos Trans A Math Phys Eng Sci ; 382(2273): 20230199, 2024 Jun 09.
Article En | MEDLINE | ID: mdl-38736332

The DESTINY+(Demonstration and Experiment of Space Technology for INterplanetary voYage with Phaethon fLyby and dUst Science) Dust Analyser (DDA) is a state-of-the-art dust telescope for the in situ analysis of cosmic dust particles. As the primary scientific payload of the DESTINY+ mission, it serves the purpose of characterizing the dust environment within the Earth-Moon system, investigating interplanetary and interstellar dust populations at 1 AU from the Sun and studying the dust cloud enveloping the asteroid (3200) Phaethon. DDA features a two-axis pointing platform for increasing the accessible fraction of the sky. The instrument combines a trajectory sensor with an impact ionization time-of-flight mass spectrometer, enabling the correlation of dynamical, physical and compositional properties for individual dust grains. For each dust measurement, a set of nine signals provides the surface charge, particle size, velocity vector, as well as the atomic, molecular and isotopic composition of the dust grain. With its capabilities, DDA is a key asset in advancing our understanding of the cosmic dust populations present along the orbit of DESTINY+. In addition to providing the scientific context, we are presenting an overview of the instrument's design and functionality, showing first laboratory measurements and giving insights into the observation planning. This article is part of a theme issue 'Dust in the Solar System and beyond'.

3.
J Orthop Traumatol ; 25(1): 23, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38653863

BACKGROUND: The exact positioning of the cephalomedullary (CM) nail entry point for managing femoral fractures remains debatable, with significant implications for fracture reduction and postoperative complications. This study aimed to explore the variability in the selection of the entry point among trauma surgeons, hypothesizing potential differences and their association with surgeon experience. METHODS: In this prospective multicenter study, 16 participants, ranging from residents to senior specialists, partook in a simulation wherein they determined the optimal entry point for the implantation of a proximal femoral nail antirotation (PFN-A; DePuy Synthes) in various femora. The inter- and intra-observer variability was calculated, along with comprehensive descriptive statistical analysis, to assess the variability in entry point selection and the impact of surgeon experience. RESULTS: In this study, the mean distance from the selected entry points to the calculated mean entry point was 3.98 mm, with a smaller distance observed among surgeons with more than 500 implantations (ANOVA, p = 0.050). Intra-surgeon variability for identical femora averaged at 5.14 mm, showing no significant differences across various levels of surgical experience or training. Notably, 13.6% of selected entry points would not allow a proper intramedullary positioning of the implant, thereby rendering anatomical repositioning unfeasible. Among these impossible entry points, a significant skew towards anterior placement was observed (70.6% of the impossible entry points), with a smaller fraction being overly lateral (27.5%) or medial (13.7%). On a patient level, the impossibility rate varied widely from 0 to 35% among the different femora examined, with a significantly higher rate seen in younger patients (mean age 55.02 versus 60.32; t-test for independent samples, p = 0.04). CONCLUSIONS: Significant variations exist in surgeons' selection of entry points for proximal femoral nailing, underscoring the task's complexity. Experience does not prevent the choice of unfeasible entry points, emphasizing the inadequacy of a universal approach and pointing towards the necessity for a patient-specific strategy for improved outcomes. TRIAL REGISTRATION NUMBER: DRKS00032465.


Bone Nails , Femoral Fractures , Fracture Fixation, Intramedullary , Female , Humans , Male , Clinical Competence , Femoral Fractures/surgery , Fracture Fixation, Intramedullary/methods , Fracture Fixation, Intramedullary/instrumentation , Observer Variation , Prospective Studies
4.
Metab Eng ; 82: 193-200, 2024 Mar.
Article En | MEDLINE | ID: mdl-38387676

Diterpenoids form a diverse group of natural products, many of which are or could become pharmaceuticals or industrial chemicals. The modular character of diterpene biosynthesis and the promiscuity of the enzymes involved make combinatorial biosynthesis a promising approach to generate libraries of diverse diterpenoids. Here, we report on the combinatorial assembly in yeast of ten diterpene synthases producing (+)-copalyl diphosphate-derived backbones and four cytochrome P450 oxygenases (CYPs) in diverse combinations. This resulted in the production of over 200 diterpenoids. Based on literature and chemical database searches, 162 of these compounds can be considered new-to-Nature. The CYPs accepted most substrates they were given but remained regioselective with few exceptions. Our results provide the basis for the systematic exploration of the diterpenoid chemical space in yeast using sequence databases.


Biological Products , Diterpenes , Saccharomyces cerevisiae/genetics , Diterpenes/chemistry , Cytochrome P-450 Enzyme System/genetics
5.
ACS Org Inorg Au ; 3(4): 199-208, 2023 Aug 02.
Article En | MEDLINE | ID: mdl-37545657

Organophosphorus nerve agents (OPAs) are a toxic class of synthetic compounds that cause adverse effects with many biological systems. Development of methods for environmental remediation and passivation has been ongoing for years. However, little progress has been made in therapeutic development for exposure victims. Given the postexposure behavior of OPA materials in enzymes such as acetylcholinesterase (AChE), development of electrophilic compounds as therapeutics may be more beneficial than the currently employed nucleophilic countermeasures. In this report, we present our studies with an electrophilic, 16-electron manganese complex (iPrPNP)Mn(CO)2 (1) and the nucleophilic hydroxide derivative (iPrPNHP)Mn(CO)2(OH) (2). The reactivity of 1 with phosphorus acids and the reactivity of 2 with the P-F bond of diisopropylfluorophosphate (DIPF) were studied. The role of water in both nucleophilic and electrophilic reactivity was investigated with the use of 17O-labeled water. Promising results arising from reactions of both 1 and 2 with organophosphorus substrates are reported.

6.
Ecotoxicology ; 32(6): 782-801, 2023 Aug.
Article En | MEDLINE | ID: mdl-37491685

Aquatic mesocosms are complex test systems used within regulatory risk assessment of plant protection products. These model ecosystems allow researchers to capture interactions of multiple species under realistic environmental conditions. They enable assessment of direct and indirect effects of stressors at all trophic levels (i.e., from primary producers to secondary consumers) and impacts on ecosystem functions. Due to the limited ability to test the multitude of potential exposure scenarios, cross-linking aquatic mesocosm studies with virtual mesocosms, i.e., aquatic system models (ASMs), can serve to meet the demand for more environmental realism and ecological relevance in risk assessment. In this study, full control data sets from seven aquatic mesocosm studies conducted at a single test facility under GLP were analysed graphically and using descriptive statistics. Thereby, not only a comprehensive data base but also an insight into the species present, their dynamics over time, and variability in unchallenged mesocosms was observed. While consistency in dynamics could be discerned for physical and chemical parameters, variability was evident for several biological endpoints. This variability points to amplification of small differences over time as well as to stochastic processes. The outline of existing gaps and uncertainties in data leads to the estimation of what can be expected to be captured and predicted by ASMs.


Ecosystem , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Risk Assessment
7.
Sci Adv ; 9(19): eadf8537, 2023 May 12.
Article En | MEDLINE | ID: mdl-37172091

There is ongoing debate as to whether Saturn's main rings are relatively young or ancient- having been formed shortly after Saturn or during the Late Heavy Bombardment. The rings are mostly water-ice but are polluted by non-icy material with a volume fraction ranging from ∼0.1 to 2%. Continuous bombardment by micrometeoroids exogenic to the Saturnian system is a source of this non-icy material. Knowledge of the incoming mass flux of these pollutants allows estimation of the rings' exposure time, providing a limit on their age. Here we report the final measurements by Cassini's Cosmic Dust Analyzer of the micrometeoroid flux into the Saturnian system. Several populations are present, but the flux is dominated by low-relative velocity objects such as from the Kuiper belt. We find a mass flux between 6.9 · 10-17 and 2.7 · 10-16 kg m-2s-1 from which we infer a ring exposure time ≲100 to 400 million years in support of recent ring formation scenarios.

8.
J Am Soc Mass Spectrom ; 34(5): 878-892, 2023 May 03.
Article En | MEDLINE | ID: mdl-37018538

Small ice particles play an important role in atmospheric and extraterrestrial chemistry. Circumplanetary ice particles that are encountered by space probes at hypervelocities play a critical role in the determination of surface and subsurface properties of their source bodies. Here we present an apparatus for the generation of low-intensity beams of single mass-selected charged ice particles under vacuum. They are produced via electrospray ionization of water at atmospheric pressure and undergo evaporative cooling when transferred to vacuum through an atmospheric vacuum interface. m/z selection is achieved through two subsequent quadrupole mass filters operated in the variable-frequency mode within a range of m/z values between 8 × 104 and 3 × 107. Velocity and charge of the selected particles are measured using a nondestructive single-pass image charge detector. From the known electrostatic acceleration potentials and settings of the quadrupoles the particle masses could be obtained and be accurately controlled. It has been shown that the droplets are frozen within the transit time of the apparatus such that ice particles are present after the quadrupole stages and finally detected. The demonstrated correspondence between particle mass and specific quadrupole potentials in this device allows preparation of beams of single particles with a repetition rate between 0.1 and 1 Hz with various diameter distributions from 50 to 1000 nm at 30-250 eV of kinetic energy per charge. This corresponds to velocities and particle masses quickly available between 600 m/s (80 nm) and 50 m/s (900 nm) and particle charge numbers (positive) between 103 and 104[e], depending upon size.

9.
Nat Commun ; 14(1): 1733, 2023 03 28.
Article En | MEDLINE | ID: mdl-36977673

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we design a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibits PLpro with kinact/KI = 9,600 M-1 s-1, achieves sub-µM EC50 values against three SARS-CoV-2 variants in mammalian cell lines, and does not inhibit a panel of human deubiquitinases (DUBs) at >30 µM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validates our design strategy and establishes the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.


COVID-19 , Hepatitis C, Chronic , Animals , Humans , Papain/metabolism , Peptide Hydrolases/metabolism , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors , Mammals/metabolism
10.
Colloids Surf B Biointerfaces ; 222: 113087, 2023 Feb.
Article En | MEDLINE | ID: mdl-36542955

The purpose of this study was to investigate the effect of Zn doped CaP coatings prepared by micro-arc oxidation method, as a possible approach to control MgCa1 alloy degradation. All the prepared coatings comprised a calcium deficient CaP phase. The control in this evaluation was performed with undoped CaP coating in SBF solution at body temperature (37 ± 0.5°C). The investigation involved determination of microchemical, mechanical, morphological, properties along with anticorrosive, cytocompatibility and antibacterial efficacy. The effect of sterilization process on the properties of the surfaces was also investigated. The results showed that the addition of Zn into CaP increased the corrosion resistance of MgCa1 alloy. Moreover, the adhesion strength of the coatings to MgCa1 alloy was enhanced by Zn addition. In cytotoxicity testing of the samples, extracts of the samples in MEM were incubated with L929 cells and malformation, degeneration and lysis of the cells were examined microscopically after 72 h. The results showed that all samples were cytocompatible. The degradation of MgCa1 alloy in the simulated body fluids (SBF) or DMEM was decreased by coating with CaP. Moreover, the degradation rate of CaP was further decreased by adding a small amount of Zn into the CaP matrix. The samples having CaP coatings and Zn doped CaP coating demonstrated antibacterial efficacy against E.coli. As a result, coating of magnesium alloy with Zn-doped CaP decreased the degradation rate, increased the corrosion resistance, cytocompatibility and the antibacterial effects of the alloys.


Alloys , Coated Materials, Biocompatible , Alloys/pharmacology , Alloys/chemistry , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Bacteria , Corrosion , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Zinc/pharmacology , Zinc/chemistry , Materials Testing
11.
PLoS One ; 17(11): e0277670, 2022.
Article En | MEDLINE | ID: mdl-36395154

The ability of Mycobacterium tuberculosis (Mtb) to persist in its host may enable an evolutionary advantage for drug resistant variants to emerge. A potential strategy to prevent persistence and gain drug efficacy is to directly target the activity of enzymes that are crucial for persistence. We present a method for expedited discovery and structure-based design of lead compounds by targeting the hypoxia-associated enzyme L-alanine dehydrogenase (AlaDH). Biochemical and structural analyses of AlaDH confirmed binding of nucleoside derivatives and showed a site adjacent to the nucleoside binding pocket that can confer specificity to putative inhibitors. Using a combination of dye-ligand affinity chromatography, enzyme kinetics and protein crystallographic studies, we show the development and validation of drug prototypes. Crystal structures of AlaDH-inhibitor complexes with variations at the N6 position of the adenyl-moiety of the inhibitor provide insight into the molecular basis for the specificity of these compounds. We describe a drug-designing pipeline that aims to block Mtb to proliferate upon re-oxygenation by specifically blocking NAD accessibility to AlaDH. The collective approach to drug discovery was further evaluated through in silico analyses providing additional insight into an efficient drug development strategy that can be further assessed with the incorporation of in vivo studies.


Alanine Dehydrogenase , Mycobacterium tuberculosis , Alanine Dehydrogenase/metabolism , Mycobacterium tuberculosis/metabolism , Nucleosides , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Drug Discovery
12.
J Pers Med ; 12(8)2022 Jul 27.
Article En | MEDLINE | ID: mdl-36013177

BACKGROUND: In reconstructive surgery, loss of a microvascular free flap due to perfusion disorders, especially thrombosis, is a serious complication. In recent years, viscoelastic testing (VET) has become increasingly important in point-of-care (POC) anticoagulation monitoring. This paper describes a protocol for enhanced anticoagulation monitoring during maxillofacial flap surgery. OBJECTIVE: The aim of the study will be to evaluate, in a controlled setting, the predictive value of POC devices for the type of flap perfusion disorders due to thrombosis or bleeding. VET, Platelet monitoring (PM) and standard laboratory tests (SLT) are comparatively examined. METHODS/DESIGN: This study is an investigator-initiated prospective trial in 100 patients undergoing maxillofacial surgery. Patients who undergo reconstructive surgery using microvascular-free flaps will be consecutively enrolled in the study. All patients provide blood samples for VET, PM and SLT at defined time points. The primary outcome is defined as free flap loss during the hospital stay. Statistical analyses will be performed using t-tests, including the Bonferroni adjustment for multiple comparisons. DISCUSSION: This study will help clarify whether VET can improve individualized patient care in reconstruction surgery. A better understanding of coagulation in relation to flap perfusion disorders may allow real-time adaption of antithrombotic strategies and potentially prevent flap complications.

13.
Rehabilitation (Stuttg) ; 61(4): 250-263, 2022 Aug.
Article De | MEDLINE | ID: mdl-35995055

BACKGROUND: A series of studies proves a good outcome quality of psychosomatic rehabilitation. However, outcome-related comparisons with other indications are hardly available. METHODS: As part of a multicenter study, n=6608 rehabilitants from the indications psychosomatics, cardiology, neurology, oncology and orthopedics were checked regarding starting features and longer-term outcome quality (one-point survey 1 year after the end of the rehab). With a generic measurement and evaluation approach, direct and quasi-indirect change measurements and status measurements were made. In addition to comparing singular and multiple outcome criteria ("Patient Reported Outcomes", PRO), outcome criteria from the rehab statistics database (RSD) have also been checked. RESULTS: The 5 indication groups differ in both starting and process characteristics as well as in the short and longer-term outcome criteria. However, the effect sizes of the associations are mostly low. In all indications, there are positive changes in the field of health-related characteristics. The highest pre-post effect sizes are mostly found in psychosomatics, the least in neurology. In all indications, social security contributions in the first year after rehab are a bit declining - least in oncology, most clearly in neurology. Despite the biggest pre-post effects sizes in the health-related features, the rehabilitants of psychosomatics are less satisfied with the rehab and evaluate the benefits of rehab less positive. At the level of multiple outcome criteria, the indications - except neurology - are relatively little different. The multiple outcome criterion can be predicted to 28% from starting and process characteristics. Best predictor is the user sided rating regarding the job-related orientation of the rehab. CONCLUSION: The study once again proves a good longer-term outcome quality of psychosomatic rehab. However, it also shows that the longer-term outcome quality of all major indications measured by means of multiple outcome criteria is at a similar level (except neurology).Possible limitations of the study result from the one-point measurement and the resulting mode of change measurement.


Patient Reported Outcome Measures , Psychophysiologic Disorders , Germany/epidemiology , Humans , Personal Satisfaction , Psychophysiologic Disorders/epidemiology , Surveys and Questionnaires
14.
Res Sq ; 2022 Jul 21.
Article En | MEDLINE | ID: mdl-35898342

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein (ISG15) from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we have designed a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibited PLpro with k inact /K I = 10,000 M - 1 s - 1 , achieved sub-µM EC 50 values against three SARS-CoV-2 variants in mammalian cell lines, and did not inhibit a panel of human deubiquitinases at > 30 µM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validated our design strategy and established the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.

15.
Sci Rep ; 12(1): 12197, 2022 07 16.
Article En | MEDLINE | ID: mdl-35842458

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), threatens global public health. The world needs rapid development of new antivirals and vaccines to control the current pandemic and to control the spread of the variants. Among the proteins synthesized by the SARS-CoV-2 genome, main protease (Mpro also known as 3CLpro) is a primary drug target, due to its essential role in maturation of the viral polyproteins. In this study, we provide crystallographic evidence, along with some binding assay data, that three clinically approved anti hepatitis C virus drugs and two other drug-like compounds covalently bind to the Mpro Cys145 catalytic residue in the active site. Also, molecular docking studies can provide additional insight for the design of new antiviral inhibitors for SARS-CoV-2 using these drugs as lead compounds. One might consider derivatives of these lead compounds with higher affinity to the Mpro as potential COVID-19 therapeutics for further testing and possibly clinical trials.


COVID-19 Drug Treatment , Antiviral Agents/therapeutic use , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Hepacivirus/metabolism , Humans , Molecular Docking Simulation , Protease Inhibitors/chemistry , SARS-CoV-2 , Viral Nonstructural Proteins/genetics
16.
Peptides ; 157: 170844, 2022 Nov.
Article En | MEDLINE | ID: mdl-35878658

Vaccines based on proteins and peptides may be safer and if calculated based on many sequences, more broad-spectrum than those designed based on single strains. Physicochemical Property Consensus (PCPcon) alphavirus (AV) antigens from the B-domain of the E2 envelope protein were designed, synthesized recombinantly and shown to be immunogenic (i.e. sera after inoculation detected the antigen in dotspots and ELISA). Antibodies in sera after inoculation with B-region antigens based on individual AV species (eastern or Venezuelan equine encephalitis (EEEVcon, VEEVcon), or chikungunya (CHIKVcon) bound only their cognate protein, while those designed against multiple species (Mosaikcon and EVCcon) recognized all three serotype specific antigens. The VEEVcon and EEEVcon sera only showed antiviral activity against their related strains (in plaque reduction neutralization assays (PRNT50/80). Peptides designed to surface exposed areas of the E2-A-domain of CHIKVcon were added to CHIKVcon inocula to provide anti-CHIKV antibodies. EVCcon, based on three different alphavirus species, combined with E2-A-domain peptides from AllAVcon, a PCPcon of 24 diverse AV, generated broad spectrum, antiviral antibodies against VEEV, EEEV and CHIKV, AV with less than 35% amino acid identity to each other (>65% diversity). This is a promising start to a molecularly defined vaccine against all AV. Further study with these antigens can illuminate what areas are most important for a robust immune response, resistant to mutations in rapidly evolving viruses. The validated computational methods can also be used to design broad spectrum antigens against many other pathogen families.


Alphavirus , Amino Acids , Antibodies, Viral , Antiviral Agents , Broadly Neutralizing Antibodies , Consensus , Peptides
17.
ACS Appl Mater Interfaces ; 14(1): 104-122, 2022 Jan 12.
Article En | MEDLINE | ID: mdl-34958199

In orthopedic surgery, metals are preferred to support or treat damaged bones due to their high mechanical strength. However, the necessity for a second surgery for implant removal after healing creates problems. Therefore, biodegradable metals, especially magnesium (Mg), gained importance, although their extreme susceptibility to galvanic corrosion limits their applications. The focus of this study was to control the corrosion of Mg and enhance its biocompatibility. For this purpose, surfaces of magnesium-calcium (MgCa1) alloys were modified with calcium phosphate (CaP) or CaP doped with zinc (Zn) or gallium (Ga) via microarc oxidation. The effects of surface modifications on physical, chemical, and mechanical properties and corrosion resistance of the alloys were studied using surface profilometry, goniometry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), nanoindentation, and electrochemical impedance spectroscopy (EIS). The coating thickness was about 5-8 µm, with grain sizes of 43.1 nm for CaP coating and 28.2 and 58.1 nm for Zn- and Ga-doped coatings, respectively. According to EIS measurements, the capacitive response (Yc) decreased from 11.29 to 8.72 and 0.15 Ω-1 cm-2 sn upon doping with Zn and Ga, respectively. The Ecorr value, which was -1933 mV for CaP-coated samples, was found significantly electropositive at -275 mV for Ga-doped ones. All samples were cytocompatible according to indirect tests. In vitro culture with Saos-2 cells led to changes in the surface compositions of the alloys. The numbers of cells attached to the Zn-doped (2.6 × 104 cells/cm2) and Ga-doped (6.3 × 104 cells/cm2) coatings were higher than that on the surface of the undoped coating (1.0 × 103 cells/cm2). Decreased corrosivity and enhanced cell affinity of the modified MgCa alloys (CaP coated and Zn and Ga doped, with Ga-doped ones having the greatest positive effect) make them novel and promising candidates as biodegradable metallic implant materials for the treatment of bone damages and other orthopedic applications.


Alloys/chemistry , Calcium Phosphates/chemistry , Coated Materials, Biocompatible/chemistry , Absorbable Implants , Alloys/toxicity , Animals , Calcium/chemistry , Calcium/toxicity , Calcium Phosphates/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Coated Materials, Biocompatible/toxicity , Corrosion , Elastic Modulus , Gallium/chemistry , Gallium/toxicity , Humans , Magnesium/chemistry , Magnesium/toxicity , Materials Testing , Mice , Wettability , Zinc/chemistry , Zinc/toxicity
18.
Res Sq ; 2022 Jul 21.
Article En | MEDLINE | ID: mdl-34642689

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein (ISG15) from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we have designed a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibited PLpro with kinact/KI = 10,000 M- 1 s- 1, achieved sub-µM EC50 values against three SARS-CoV-2 variants in mammalian cell lines, and did not inhibit a panel of human deubiquitinases at > 30 µM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validated our design strategy and established the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.

19.
J Chem Inf Model ; 62(1): 116-128, 2022 01 10.
Article En | MEDLINE | ID: mdl-34793155

Despite the recent availability of vaccines against the acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the search for inhibitory therapeutic agents has assumed importance especially in the context of emerging new viral variants. In this paper, we describe the discovery of a novel noncovalent small-molecule inhibitor, MCULE-5948770040, that binds to and inhibits the SARS-Cov-2 main protease (Mpro) by employing a scalable high-throughput virtual screening (HTVS) framework and a targeted compound library of over 6.5 million molecules that could be readily ordered and purchased. Our HTVS framework leverages the U.S. supercomputing infrastructure achieving nearly 91% resource utilization and nearly 126 million docking calculations per hour. Downstream biochemical assays validate this Mpro inhibitor with an inhibition constant (Ki) of 2.9 µM (95% CI 2.2, 4.0). Furthermore, using room-temperature X-ray crystallography, we show that MCULE-5948770040 binds to a cleft in the primary binding site of Mpro forming stable hydrogen bond and hydrophobic interactions. We then used multiple µs-time scale molecular dynamics (MD) simulations and machine learning (ML) techniques to elucidate how the bound ligand alters the conformational states accessed by Mpro, involving motions both proximal and distal to the binding site. Together, our results demonstrate how MCULE-5948770040 inhibits Mpro and offers a springboard for further therapeutic design.


COVID-19 , Protease Inhibitors , Antiviral Agents , Coronavirus 3C Proteases , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Orotic Acid/analogs & derivatives , Piperazines , SARS-CoV-2
20.
Lung Cancer ; 163: 77-86, 2022 01.
Article En | MEDLINE | ID: mdl-34942492

Central nervous system-penetrant therapies with intracranial efficacy against non-small cell lung cancer (NSCLC) brain metastases are urgently needed. We report preclinical studies investigating brain penetration and intracranial activity of the MET inhibitor tepotinib. After intravenous infusion of tepotinib in Wistar rats (n = 3), mean (±standard deviation) total tepotinib concentration was 2.87-fold higher in brain (505 ± 22 ng/g) than plasma (177 ± 20 ng/mL). In equilibrium dialysis experiments performed in triplicate, mean tepotinib unbound fraction was 0.35% at 0.3 and 3.0 µM tepotinib in rat brain tissue, and 4.0% at 0.3 and 1.0 µM tepotinib in rat plasma. The calculated unbound brain-to-plasma ratio was 0.25, indicating brain penetration sufficient for intracranial target inhibition. Of 20 screened subcutaneous patient-derived xenograft (PDX) models from lung cancer brain metastases (n = 1), two NSCLC brain metastases models (LU5349 and LU5406) were sensitive to the suboptimal dose of tepotinib of 30 mg/kg/qd (tumor volume change [%TV]: -12% and -88%, respectively). Molecular profiling (nCounter®; NanoString) revealed high-level MET amplification in both tumors (mean MET gene copy number: 11.2 and 24.2, respectively). Tepotinib sensitivity was confirmed for both subcutaneous models at a clinically relevant dose (125 mg/kg/qd; n = 5). LU5349 and LU5406 were orthotopically implanted into brains of mice and monitored by magnetic resonance imaging (MRI). Tepotinib 125 mg/kg/qd induced pronounced tumor regression, including complete or near-complete regressions, compared with vehicle in both orthotopic models (n = 10; median %TV: LU5349, -84%; LU5406, -63%). Intracranial antitumor activity of tepotinib did not appear to correlate with blood-brain barrier leakiness assessed in T1-weighted gadolinium contrast-enhanced MRI.


Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Brain/diagnostic imaging , Brain Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Heterografts , Humans , Lung Neoplasms/drug therapy , Piperidines , Proto-Oncogene Proteins c-met/metabolism , Pyridazines , Pyrimidines , Rats , Rats, Wistar , Xenograft Model Antitumor Assays
...