Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185750

RESUMEN

Positive and negative ions produced by radioactive sources and corona discharges in gases find a number of applications, including charging aerosol particles prior to their measurement by electrical and/or electrical mobility techniques. The degree to which these ions can charge aerosol particles depends on their mobility and mass; properties that are strongly affected by the composition of the carrier gas and the impurities that it contains. We show that when the purity of the carrier gas is increased, the mobility of both positive and negative ions increases by more than 50%, whereas the respective masses reduce by more than 50%. In most cases, the dominant positive species is N4+, whereas NO2- and NO3- prevail for the negative polarity. Differences in ion mobility and mass resulting from the two ionization methods (i.e., radioactive source and corona discharges) remain limited. When volatile methyl siloxanes (VMS) are introduced deliberately to the gas, the mobility of the cations decreases by 39% and their mass increases by 385%, while the dominant mobility and mass peaks of the negative ions remains almost unaffected. Interestingly, introduction of VMS also leads to consistent and reproducible positive ion properties across all variations of the experiments, which can be especially relevant for charging aerosol particles in a reproducible manner. Taken together, the new measurements we report in this paper corroborate prior knowledge that the composition and purity of the carrier gas strongly influence the properties of positive and negative ions generated in aerosol neutralizers, and provide new evidence regarding their evolution in the presence of impurities.

2.
Heliyon ; 9(3): e13669, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36819229

RESUMEN

In any infectious disease, understanding the modes of transmission is key to selecting effective public health measures. In the case of COVID-19 spread, the strictness of the imposed measures outlined the lack of understanding on how SARS-CoV-2 transmits, particularly via airborne pathways. With the aim to characterize the transmission dynamics of airborne SARS-CoV-2, 165 and 62 air and environmental samples, respectively, were collected in four COVID-19 wards and ICUs in Cyprus and analyzed by RT-PCR. An alternative method for SARS-CoV-2 detection in air that provides comparable results but is less cumbersome and time demanding, is also proposed. Considering that all clinics employed 14 regenerations per hour of full fresh air inside patient rooms, it was hypothesized that the viral levels and the frequency of positive samples would be minimum outside of the rooms. However, it is shown that leaving the door opened in patient rooms hinders the efficiency of the ventilation system applied, allowing the virus to escape. As a result, the highest observed viral levels (135 copies m-3) were observed in the corridor of a ward and the frequency of positive samples in the same area was comparable to that inside a two-bed cohort. SARS-CoV-2 in that corridor was found primarily to lie in the coarse mode, at sizes between 1.8 and 10 µm. Similar to previous studies, the frequency of positive samples and viral levels were the lowest inside intensive care units. However, if a patient with sufficient viral load (Ct-value 31) underwent aerosol generating procedures, positive samples with viral levels below 45 copies m-3 were acquired within a 2 m distance of the patient. Our results suggest that a robust ventilation system can prevent unnecessary exposure to SARS-CoV-2 but with limitations related to foot traffic or the operations taking place at the time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA