Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 9(33): e2203371, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36251923

RESUMEN

The lateral eyes of the horseshoe crab, Limulus polyphemus, are the largest compound eyes within recent Arthropoda. The cornea of these eyes contains hundreds of inward projecting elongated cuticular cones and concentrate light onto proximal photoreceptor cells. Although this visual system has been extensively studied before, the precise mechanism allowing vision has remained controversial. Correlating high-resolution quantitative refractive index (RI) mapping and structural analysis, it is demonstrated how gradients of RI in the cornea stem from structural and compositional gradients in the cornea. In particular, these RI variations result from the chitin-protein fibers architecture, heterogeneity in protein composition, and bromine doping, as well as spatial variation in water content resulting from matrix cross-linking on the one hand and cuticle porosity on the other hand. Combining the realistic cornea structure and measured RI gradients with full-wave optical modeling and ray tracing, it is revealed that the light collection mechanism switches from refraction-based graded index (GRIN) optics at normal light incidence to combined GRIN and total internal reflection mechanism at high incident angles. The optical properties of the cornea are governed by different mechanisms at different hierarchical levels, demonstrating the remarkable versatility of arthropod cuticle.


Asunto(s)
Cangrejos Herradura , Proteínas , Animales , Cangrejos Herradura/química , Cangrejos Herradura/metabolismo , Proteínas/metabolismo , Células Fotorreceptoras , Visión Ocular , Córnea
2.
Nanoscale ; 12(48): 24411-24418, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33300518

RESUMEN

Plasmon-mediated chemistry presents an intriguing new approach to photocatalysis. However, the reaction enhancement mechanism is not well understood. In particular, the relative importance of plasmon-generated hot charges and photoheating is strongly debated. In this article, we evaluate the influence of microscopic photoheating on the kinetics of a model plasmon-catalyzed reaction: the light-induced 4-nitrothiophenol (4NTP) to 4,4'-dimercaptoazobenzene (DMAB) dimerization. Direct measurement of the reaction temperature by nanoparticle Raman-thermometry demonstrated that the thermal effect plays a dominant role in the kinetic limitations of this multistep reaction. At the same time, no reaction is possible by dark heating to the same temperature. This shows that plasmon nanoparticles have the unique ability to enhance several steps of complex tandem reactions simultaneously. These results provide insight into the role of hot electron and thermal effects in plasmonic catalysis of complex organic reactions, which is highly important for the ongoing development of plasmon based photosynthesis.

3.
Chempluschem ; 85(3): 519-526, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31961045

RESUMEN

By adding hyaluronic acid (HA) to dioctyl sodium sulfosuccinate (AOT)-stabilized gold nanotriangles (AuNTs) with an average thickness of 7.5±1 nm and an edge length of about 175±17 nm, the AOT bilayer is replaced by a polymeric HA-layer leading to biocompatible nanoplatelets. The subsequent reduction process of tetrachloroauric acid in the HA-shell surrounding the AuNTs leads to the formation of spherical gold nanoparticles on the platelet surface. With increasing tetrachloroauric acid concentration, the decoration with gold nanoparticles can be tuned. SAXS measurements reveal an increase of the platelet thickness up to around 14.5 nm, twice the initial value of bare AuNTs. HRTEM micrographs show welding phenomena between densely packed particles on the platelet surface, leading to a crumble formation while preserving the original crystal structure. Crumbles crystallized on top of the platelets enhance the Raman signal by a factor of around 20, and intensify the plasmon-driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4'-dimercaptoazobenzene in a yield of up to 50 %. The resulting crumbled nanotriangles, with a biopolymer shell and the absorption maximum in the second window for in vivo imaging, are promising candidates for biomedical sensing.

4.
RSC Adv ; 10(14): 8152-8160, 2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35497869

RESUMEN

We show the formation of metallic spikes on the surface of gold nanotriangles (AuNTs) by using the same reduction process which has been used for the synthesis of gold nanostars. We confirm that silver nitrate operates as a shape-directing agent in combination with ascorbic acid as the reducing agent and investigate the mechanism by dissecting the contribution of each component, i.e., anionic surfactant dioctyl sodium sulfosuccinate (AOT), ascorbic acid (AA), and AgNO3. Molecular dynamics (MD) simulations show that AA attaches to the AOT bilayer of nanotriangles, and covers the surface of gold clusters, which is of special relevance for the spike formation process at the AuNT surface. The surface modification goes hand in hand with a change of the optical properties. The increased thickness of the triangles and a sizeable fraction of silver atoms covering the spikes lead to a blue-shift of the intense near infrared absorption of the AuNTs. The sponge-like spiky surface increases both the surface enhanced Raman scattering (SERS) cross section of the particles and the photo-catalytic activity in comparison with the unmodified triangles, which is exemplified by the plasmon-driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4'-dimercaptoazobenzene (DMAB).

5.
Chemistry ; 26(6): 1243-1248, 2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-31834652

RESUMEN

Considerable research efforts have been devoted to surface-enhanced Raman spectroscopy (SERS), due to its excellent performance in biosensing and imaging. Here, a novel and facile strategy for the fabrication of well-defined and uniform nanodimers as SERS substrates is presented. By the assistance of ultrasound, the violent polyol process for particle generation becomes controllable, enabling the self-assembly of nanostars to nanodimers. Moreover, the aggregation of nanodimers can be easily tuned by post-ultrasonic treatment, which gives a sensitive substrate for SERS.

6.
RSC Adv ; 9(41): 23633-23641, 2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35530609

RESUMEN

Due to the enhanced electromagnetic field at the tips of metal nanoparticles, the spiked structure of gold nanostars (AuNSs) is promising for surface-enhanced Raman scattering (SERS). Therefore, the challenge is the synthesis of well designed particles with sharp tips. The influence of different surfactants, i.e., dioctyl sodium sulfosuccinate (AOT), sodium dodecyl sulfate (SDS), and benzylhexadecyldimethylammonium chloride (BDAC), as well as the combination of surfactant mixtures on the formation of nanostars in the presence of Ag+ ions and ascorbic acid was investigated. By varying the amount of BDAC in mixed micelles the core/spike-shell morphology of the resulting AuNSs can be tuned from small cores to large ones with sharp and large spikes. The concomitant red-shift in the absorption toward the NIR region without losing the SERS enhancement enables their use for biological applications and for time-resolved spectroscopic studies of chemical reactions, which require a permanent supply with a fresh and homogeneous solution. HRTEM micrographs and energy-dispersive X-ray (EDX) experiments allow us to verify the mechanism of nanostar formation according to the silver underpotential deposition on the spike surface in combination with micelle adsorption.

7.
J R Soc Interface ; 12(110): 0466, 2015 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-26311314

RESUMEN

Protein-metal coordination interactions were recently found to function as crucial mechanical cross-links in certain biological materials. Mussels, for example, use Fe ions from the local environment coordinated to DOPA-rich proteins to stiffen the protective cuticle of their anchoring byssal attachment threads. Bioavailability of metal ions in ocean habitats varies significantly owing to natural and anthropogenic inputs on both short and geological spatio-temporal scales leading to large variations in byssal thread metal composition; however, it is not clear how or if this affects thread performance. Here, we demonstrate that in natural environments mussels can opportunistically replace Fe ions in the DOPA coordination complex with V and Al. In vitro removal of the native DOPA-metal complexes with ethylenediaminetetraacetic acid and replacement with either Fe or V does not lead to statistically significant changes in cuticle performance, indicating that each metal ion is equally sufficient as a DOPA cross-linking agent, able to account for nearly 85% of the stiffness and hardness of the material. Notably, replacement with Al ions also leads to full recovery of stiffness, but only 82% recovery of hardness. These findings have important implications for the adaptability of this biological material in a dynamically changing and unpredictable habitat.


Asunto(s)
Aluminio/metabolismo , Dihidroxifenilalanina/metabolismo , Hierro/metabolismo , Mytilus/metabolismo , Animales
8.
Biomacromolecules ; 16(9): 2852-61, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26296100

RESUMEN

Marine mussels tether to seashore surfaces with byssal threads, proteinaceous fibers that effectively dissipate energy from crashing waves. Protein-metal coordination bonds have been proposed to contribute to the characteristic mechanical and self-healing properties of byssal threads; however, very little is understood about how these cross-links function at the molecular level. In the present study, combined Raman and X-ray absorption spectroscopy (XAS) measurements were employed to confirm the presence of protein-Zn(2+) coordination bonds in the mussel byssus and to monitor transitions in the coordination structure during thread deformation and self-healing. Results indicate that Zn(2+) coordination bonds, primarily mediated via histidine, are ruptured during thread yield and reformed immediately following thread relaxation. Mechanical healing, on the other hand, is correlated with the transition toward shorter coordination bond lengths. Calculation of the healing activation energy suggests that protein-Zn bond exchange provides a primary rate-limiting step during healing.


Asunto(s)
Bivalvos/química , Metaloproteínas/química , Complejos Multiproteicos/química , Zinc/química , Animales
9.
Biomater Sci ; 2(5): 710-722, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32481845

RESUMEN

Integrative and comparative analyses of biomaterials systems offer the potential to reveal conserved elements that are essential for mechanical function. The approach also affords the opportunity to identify variation in designs at multiple length scales, enabling the delineation of a range of parameters for creating precisely tuned biomimetic materials. We investigated the molecular design and structural hierarchy of elastomeric egg capsules from the marine snail Pugilina cochlidium (family Melongenidae) and compared these data with all available published studies in order to infer the structure-property relationships of the egg case from the molecular to the macroscopic scale. While mechanical similarities had previously been observed for two other marine melongenid snails, Busycotypus canaliculatus and Busycon carica, B. canaliculatus was the only species for which detailed molecular and nanostructural data were available. Egg capsules from P. cochlidium were found to exhibit mechanical properties and shock absorbing potential that was similar to B. canaliculatus. The two species also displayed similarity in hierarchical fibril bundling and a sub-micron staggering of 100-105 nm within filaments, as shown by atomic force microscopy and small angle X-ray diffraction. In situ Raman micro spectroscopy indicated that P. cochlidium egg cases undergo a stress-induced coiled-coil to extended ß-strand structural transformation that is very similar to that of B. canaliculatus. These observations supported the view that these structural and hierarchical elements are essential for egg case function. Comparative analysis of the primary amino acid sequences and structural predictions for all known egg case proteins suggested that while the proteins all contain sequences prone to adopt α-helical structures, the predicted location of coiled-coil domains and stutter perturbations varied within and between species. Despite these differences, mixtures of denatured native egg case proteins readily re-folded in citrate-phosphate assembly buffer into α-helix rich, coiled-coil based oligomers, as determined by attenuated total reflection Fourier transform infrared spectroscopy, circular dichroism and MALDI-TOF. It is concluded that both conserved and divergent designs in marine snail egg cases offer inspiration for the engineering of biomimetic elastomeric materials with a unique capability for mechanical energy absorption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA