Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 9024, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31227720

RESUMEN

Inversely tapered silicon photonic resonators on silicon substrates were shown to host multiple high-Q whispering gallery modes and constitute versatile building blocks for CMOS compatible solid state lighting, optical sensing and modulator devices. So far, numerical analyses by the finite difference time domain method have been used to predict the height distribution of whispering gallery modes in such resonators. In this study, we provide an experimental evidence of this mode distribution along the resonator height by selectively exciting whispering gallery modes using cathodoluminescence spectroscopy. Further we derive analytical functions that permit to relate the height distribution of modes with a defined polarization, symmetry and effective refractive index to the geometrical shape of the inversely tapered resonators.

2.
Anal Bioanal Chem ; 409(16): 4099-4109, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28439620

RESUMEN

When analysing microplastics in food, due to toxicological reasons it is important to achieve clear identification of particles down to a size of at least 1 µm. One reliable, optical analytical technique allowing this is micro-Raman spectroscopy. After isolation of particles via filtration, analysis is typically performed directly on the filter surface. In order to obtain high qualitative Raman spectra, the material of the membrane filters should not show any interference in terms of background and Raman signals during spectrum acquisition. To facilitate the usage of automatic particle detection, membrane filters should also show specific optical properties. In this work, beside eight different, commercially available membrane filters, three newly designed metal-coated polycarbonate membrane filters were tested to fulfil these requirements. We found that aluminium-coated polycarbonate membrane filters had ideal characteristics as a substrate for micro-Raman spectroscopy. Its spectrum shows no or minimal interference with particle spectra, depending on the laser wavelength. Furthermore, automatic particle detection can be applied when analysing the filter surface under dark-field illumination. With this new membrane filter, analytics free of interference of microplastics down to a size of 1 µm becomes possible. Thus, an important size class of these contaminants can now be visualized and spectrally identified. Graphical abstract A newly developed aluminium coated polycarbonate membrane filter enables automatic particle detection and generation of high qualitative Raman spectra allowing identification of small microplastics.


Asunto(s)
Filtración/métodos , Análisis de los Alimentos/métodos , Contaminación de Alimentos/análisis , Membranas Artificiales , Plásticos/análisis , Espectrometría Raman/métodos , Aluminio/química , Celulosa/análogos & derivados , Filtración/instrumentación , Análisis de los Alimentos/instrumentación , Oro/química , Tamaño de la Partícula , Plásticos/aislamiento & purificación , Cemento de Policarboxilato/química , Plata/química , Espectrometría Raman/instrumentación
4.
Sci Rep ; 5: 17089, 2015 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-26606890

RESUMEN

Silicon nanowires (SiNWs) attached to a wafer substrate are converted to inversely tapered silicon nanocones (SiNCs). After excitation with visible light, individual SiNCs show a 200-fold enhanced integral band-to-band luminescence as compared to a straight SiNW reference. Furthermore, the reverse taper is responsible for multifold emission peaks in addition to the relatively broad near-infrared (NIR) luminescence spectrum. A thorough numerical mode analysis reveals that unlike a SiNW the inverted SiNC sustains a multitude of leaky whispering gallery modes. The modes are unique to this geometry and they are characterized by a relatively high quality factor (Q ~ 1300) and a low mode volume (0.2 < (λ/n eff)(3) < 4). In addition they show a vertical out coupling of the optically excited NIR luminescence with a numerical aperture as low as 0.22. Estimated Purcell factors Fp ∝ Q/Vm of these modes can explain the enhanced luminescence in individual emission peaks as compared to the SiNW reference. Investigating the relation between the SiNC geometry and the mode formation leads to simple design rules that permit to control the number and wavelength of the hosted modes and therefore the luminescent emission peaks.

5.
Sci Rep ; 5: 8570, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25709091

RESUMEN

The fovea centralis is a closely-packed vertical array of inverted-cone photoreceptor cells located in the retina that is responsible for high acuity binocular vision. The cones are operational in well-lit environments and are responsible for trapping the impinging illumination. We present the vertical light-funnel silicon array as a light-trapping technique for photovoltaic applications that is bio-inspired by the properties of the fovea centralis. We use opto-electronic simulations to evaluate the performance of light-funnel solar cell arrays. Light-funnel arrays present ~65% absorption enhancement compared to a silicon film of identical thickness and exhibit power conversion efficiencies that are 60% higher than those of optimized nanowire arrays of the same thickness although nanowire arrays consist of more than 2.3 times the amount of silicon. We demonstrate the superior absorption of the light-funnel arrays as compared with recent advancements in the field. Fabrication of silicon light-funnel arrays using low-cost processing techniques is demonstrated.

6.
Nano Lett ; 12(8): 4050-4, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22823245

RESUMEN

Silicon nanowires (SiNW) were formed on large grained, electron-beam crystallized silicon (Si) thin films of only ∼6 µm thickness on glass using nanosphere lithography (NSL) in combination with reactive ion etching (RIE). Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) studies revealed outstanding structural properties of this nanomaterial. It could be shown that SiNWs with entirely predetermined shapes including lengths, diameters and spacings and straight side walls form independently of their crystalline orientation and arrange in ordered arrays on glass. Furthermore, for the first time grain boundaries could be observed in individual, straightly etched SiNWs. After heat treatment an electronic grade surface quality of the SiNWs could be shown by X-ray photoelectron spectroscopy (XPS). Integrating sphere measurements show that SiNW patterning of the multicrystalline Si (mc-Si) starting thin film on glass substantially increases absorption and reduces reflection, as being desired for an application in thin film photovoltaics (PV). The multicrystalline SiNWs directly mark a starting point for research not only in PV but also in other areas like nanoelectronics, surface functionalization, and nanomechanics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...