Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
bioRxiv ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38948844

RESUMEN

Unique for a eukaryote, protein-coding genes in trypanosomes are arranged in polycistronic units (PTUs). This genome arrangement has led to a model where Pol II transcription of PTUs is unregulated. The initial step in trypanosome lytic factor (TLF) mediated lysis of Trypanosoma brucei requires high affinity haptoglobin/hemoglobin receptor (HpHbR) binding. Here we demonstrate that by in vitro selection with TLF, resistance is obtained in a stepwise process correlating with loss of HpHbR expression at an allelic level. RNA-seq, Pol II ChIP and run-on analysis indicate HpHbR silencing is at the transcriptional level, where loss of Pol II binding at the promoter region specifically shuts down transcription of the HpHbR containing gene cluster and the adjacent opposing gene cluster. Reversible transcriptional silencing of the divergent PTUs correlates with DNA base J modification of the shared promoter region. Therefore, epigenetic mechanisms exist to regulate gene expression via Pol II transcription initiation of gene clusters in a mono-allelic fashion. These findings suggest epigenetic chromatin-based regulation of gene expression is deeply conserved among eukaryotes, including primitive eukaryotes that rely on polycistronic transcription.

2.
bioRxiv ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39005400

RESUMEN

Cis-regulatory elements (CREs) precisely control spatiotemporal gene expression in cells. Using a spatially resolved single-cell atlas of gene expression with chromatin accessibility across ten soybean tissues, we identified 103 distinct cell types and 303,199 accessible chromatin regions (ACRs). Nearly 40% of the ACRs showed cell-type-specific patterns and were enriched for transcription factor (TF) motifs defining diverse cell identities. We identified de novo enriched TF motifs and explored conservation of gene regulatory networks underpinning legume symbiotic nitrogen fixation. With comprehensive developmental trajectories for endosperm and embryo, we uncovered the functional transition of the three sub-cell types of endosperm, identified 13 sucrose transporters sharing the DOF11 motif that were co-up-regulated in late peripheral endosperm and identified key embryo cell-type specification regulators during embryogenesis, including a homeobox TF that promotes cotyledon parenchyma identity. This resource provides a valuable foundation for analyzing gene regulatory programs in soybean cell types across tissues and life stages.

3.
Nat Plants ; 10(8): 1246-1257, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39080503

RESUMEN

Unstable transcripts have emerged as markers of active enhancers in vertebrates and shown to be involved in many cellular processes and medical disorders. However, their prevalence and role in plants is largely unexplored. Here, we comprehensively captured all actively initiating (nascent) transcripts across diverse crops and other plants using capped small (cs)RNA sequencing. We discovered that unstable transcripts are rare in plants, unlike in vertebrates, and when present, often originate from promoters. In addition, many 'distal' elements in plants initiate tissue-specific stable transcripts and are likely bona fide promoters of as-yet-unannotated genes or non-coding RNAs, cautioning against using reference genome annotations to infer putative enhancer sites. To investigate enhancer function, we integrated data from self-transcribing active regulatory region (STARR) sequencing. We found that annotated promoters and other regions that initiate stable transcripts, but not those marked by unstable or bidirectional unstable transcripts, showed stronger enhancer activity in this assay. Our findings underscore the blurred line between promoters and enhancers and suggest that cis-regulatory elements can encompass diverse structures and mechanisms in eukaryotes, including humans.


Asunto(s)
Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , ARN de Planta , Elementos de Facilitación Genéticos/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Estabilidad del ARN/genética , Plantas/genética , Análisis de Secuencia de ARN
4.
PLoS Genet ; 20(7): e1011358, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38991029

RESUMEN

Heterochromatin is critical for maintaining genome stability, especially in flowering plants, where it relies on a feedback loop involving the H3K9 methyltransferase, KRYPTONITE (KYP), and the DNA methyltransferase CHROMOMETHYLASE3 (CMT3). The H3K9 demethylase INCREASED IN BONSAI METHYLATION 1 (IBM1) counteracts the detrimental consequences of KYP-CMT3 activity in transcribed genes. IBM1 expression in Arabidopsis is uniquely regulated by methylation of the 7th intron, allowing it to monitor global H3K9me2 levels. We show the methylated intron is prevalent across flowering plants and its underlying sequence exhibits dynamic evolution. We also find extensive genetic and expression variations in KYP, CMT3, and IBM1 across flowering plants. We identify Arabidopsis accessions resembling weak ibm1 mutants and Brassicaceae species with reduced IBM1 expression or deletions. Evolution towards reduced IBM1 activity in some flowering plants could explain the frequent natural occurrence of diminished or lost CMT3 activity and loss of gene body DNA methylation, as cmt3 mutants in A. thaliana mitigate the deleterious effects of IBM1.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Metilación de ADN , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Heterocromatina , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Metilación de ADN/genética , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Intrones/genética , Histonas/metabolismo , Histonas/genética , Mutación , ADN-Citosina Metilasas/metabolismo , ADN-Citosina Metilasas/genética , Inestabilidad Genómica
5.
Nucleic Acids Res ; 52(12): 6866-6885, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38783162

RESUMEN

The genomes of Leishmania and trypanosomes are organized into polycistronic transcription units flanked by a modified DNA base J involved in promoting RNA polymerase II (Pol II) termination. We recently characterized a Leishmania complex containing a J-binding protein, PP1 protein phosphatase 1, and PP1 regulatory protein (PNUTS) that controls transcription termination potentially via dephosphorylation of Pol II by PP1. While T. brucei contains eight PP1 isoforms, none purified with the PNUTS complex, complicating the analysis of PP1 function in termination. We now demonstrate that the PP1-binding motif of TbPNUTS is required for function in termination in vivo and that TbPP1-1 modulates Pol II termination in T. brucei and dephosphorylation of the large subunit of Pol II. PP1-1 knock-down results in increased cellular levels of phosphorylated RPB1 accompanied by readthrough transcription and aberrant transcription of the chromosome by Pol II, including Pol I transcribed loci that are typically silent, such as telomeric VSG expression sites involved in antigenic variation. These results provide important insights into the mechanism underlying Pol II transcription termination in primitive eukaryotes that rely on polycistronic transcription and maintain allelic exclusion of VSG genes.


Asunto(s)
Alelos , Proteína Fosfatasa 1 , Proteínas Protozoarias , ARN Polimerasa II , Terminación de la Transcripción Genética , Trypanosoma brucei brucei , Glicoproteínas Variantes de Superficie de Trypanosoma , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/enzimología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Fosforilación , Transcripción Genética
6.
Front Plant Sci ; 15: 1412239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736452

RESUMEN

[This corrects the article DOI: 10.3389/fpls.2023.1279231.].

7.
Genome Biol ; 25(1): 90, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589969

RESUMEN

Single-cell ATAC-seq has emerged as a powerful approach for revealing candidate cis-regulatory elements genome-wide at cell-type resolution. However, current single-cell methods suffer from limited throughput and high costs. Here, we present a novel technique called scifi-ATAC-seq, single-cell combinatorial fluidic indexing ATAC-sequencing, which combines a barcoded Tn5 pre-indexing step with droplet-based single-cell ATAC-seq using the 10X Genomics platform. With scifi-ATAC-seq, up to 200,000 nuclei across multiple samples can be indexed in a single emulsion reaction, representing an approximately 20-fold increase in throughput compared to the standard 10X Genomics workflow.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Núcleo Celular
8.
New Phytol ; 242(3): 1363-1376, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38450804

RESUMEN

Polyploidy is an important evolutionary force, yet epigenetic mechanisms, such as DNA methylation, that regulate genome-wide expression of duplicated genes remain largely unknown. Here, we use Tragopogon (Asteraceae) as a model system to discover patterns and temporal dynamics of DNA methylation in recently formed polyploids. The naturally occurring allotetraploid Tragopogon miscellus formed in the last 95-100 yr from parental diploids Tragopogon dubius and T. pratensis. We profiled the DNA methylomes of these three species using whole-genome bisulfite sequencing. Genome-wide methylation levels in T. miscellus were intermediate between its diploid parents. However, nonadditive CG and CHG methylation occurred in transposable elements (TEs), with variation among TE types. Most differentially methylated regions (DMRs) showed parental legacy, but some novel DMRs were detected in the polyploid. Differentially methylated genes (DMGs) were also identified and characterized. This study provides the first assessment of both overall and locus-specific patterns of DNA methylation in a recent natural allopolyploid and shows that novel methylation variants can be generated rapidly after polyploid formation. Together, these results demonstrate that mechanisms to regulate duplicate gene expression may arise soon after allopolyploid formation and that these mechanisms vary among genes.


Asunto(s)
Asteraceae , Tragopogon , Tragopogon/genética , Asteraceae/genética , Metilación de ADN/genética , Poliploidía , Genoma de Planta
9.
bioRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38405933

RESUMEN

While considerable knowledge exists about the enzymes pivotal for C4 photosynthesis, much less is known about the cis-regulation important for specifying their expression in distinct cell types. Here, we use single-cell-indexed ATAC-seq to identify cell-type-specific accessible chromatin regions (ACRs) associated with C4 enzymes for five different grass species. This study spans four C4 species, covering three distinct photosynthetic subtypes: Zea mays and Sorghum bicolor (NADP-ME), Panicum miliaceum (NAD-ME), Urochloa fusca (PEPCK), along with the C3 outgroup Oryza sativa. We studied the cis-regulatory landscape of enzymes essential across all C4 species and those unique to C4 subtypes, measuring cell-type-specific biases for C4 enzymes using chromatin accessibility data. Integrating these data with phylogenetics revealed diverse co-option of gene family members between species, showcasing the various paths of C4 evolution. Besides promoter proximal ACRs, we found that, on average, C4 genes have two to three distal cell-type-specific ACRs, highlighting the complexity and divergent nature of C4 evolution. Examining the evolutionary history of these cell-type-specific ACRs revealed a spectrum of conserved and novel ACRs, even among closely related species, indicating ongoing evolution of cis-regulation at these C4 loci. This study illuminates the dynamic and complex nature of CRE evolution in C4 photosynthesis, particularly highlighting the intricate cis-regulatory evolution of key loci. Our findings offer a valuable resource for future investigations, potentially aiding in the optimization of C3 crop performance under changing climatic conditions.

10.
Infection ; 52(3): 1099-1111, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38366304

RESUMEN

PURPOSE: In late 2022, a surge of severe S. pyogenes infections was reported in several European countries. This study assessed hospitalizations and disease severity of community-acquired bacterial infections with S. pyogenes, S. pneumoniae, N. meningitidis, and H. influenzae among children in North Rhine-Westphalia (NRW), Germany, during the last quarter of 2022 compared to long-term incidences. METHODS: Hospital cases due to bacterial infections between October and December 2022 were collected in a multicenter study (MC) from 59/62 (95%) children's hospitals in NRW and combined with surveillance data (2016-2023) from the national reference laboratories for streptococci, N. meningitidis, and H. influenzae. Overall and pathogen-specific incidence rates (IR) from January 2016 to March 2023 were estimated via capture-recapture analyses. Expected annual deaths from the studied pathogens were calculated from national death cause statistics. RESULTS: In the MC study, 153 cases with high overall disease severity were reported with pneumonia being most common (59%, n = 91). IRs of bacterial infections declined at the beginning of the COVID-19 pandemic and massively surged to unprecedented levels in late 2022 and early 2023 (overall hospitalizations 3.5-fold), with S. pyogenes and S. pneumoniae as main drivers (18-fold and threefold). Observed deaths during the study period exceeded the expected number for the entire year in NRW by far (7 vs. 0.9). DISCUSSION: The unprecedented peak of bacterial infections and deaths in late 2022 and early 2023 was caused mainly by S. pyogenes and S. pneumoniae. Improved precautionary measures are needed to attenuate future outbreaks.


Asunto(s)
Infecciones Comunitarias Adquiridas , Brotes de Enfermedades , Humanos , Alemania/epidemiología , Infecciones Comunitarias Adquiridas/epidemiología , Infecciones Comunitarias Adquiridas/microbiología , Niño , Preescolar , Lactante , Brotes de Enfermedades/estadística & datos numéricos , Adolescente , Femenino , Masculino , Hospitalización/estadística & datos numéricos , Infecciones Bacterianas/epidemiología , Incidencia , Recién Nacido , Streptococcus pyogenes
11.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38260561

RESUMEN

Cis -regulatory elements (CREs) are critical in regulating gene expression, and yet our understanding of CRE evolution remains a challenge. Here, we constructed a comprehensive single-cell atlas of chromatin accessibility in Oryza sativa , integrating data from 104,029 nuclei representing 128 discrete cell states across nine distinct organs. We used comparative genomics to compare cell-type resolved chromatin accessibility between O. sativa and 57,552 nuclei from four additional grass species ( Zea mays, Sorghum bicolor, Panicum miliaceum , and Urochloa fusca ). Accessible chromatin regions (ACRs) had different levels of conservation depending on the degree of cell-type specificity. We found a complex relationship between ACRs with conserved noncoding sequences, cell-type specificity, conservation, and tissue-specific switching. Additionally, we found that epidermal ACRs were less conserved compared to other cell types, potentially indicating that more rapid regulatory evolution has occurred in the L1 epidermal layer of these species. Finally, we identified and characterized a conserved subset of ACRs that overlapped the repressive histone modification H3K27me3, implicating them as potentially critical silencer CREs maintained by evolution. Collectively, this comparative genomics approach highlights the dynamics of cell-type-specific CRE evolution in plants.

12.
G3 (Bethesda) ; 14(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38190722

RESUMEN

Duckweeds are among the fastest reproducing plants, able to clonally divide at exponential rates. However, the genetic and epigenetic impact of clonality on plant genomes is poorly understood. 5-methylcytosine (5mC) is a modified base often described as necessary for the proper regulation of certain genes and transposons and for the maintenance of genome integrity in plants. However, the extent of this dogma is limited by the current phylogenetic sampling of land plant species diversity. Here we analyzed DNA methylomes, small RNAs, mRNA-seq, and H3K9me2 histone modification for Spirodela polyrhiza. S. polyrhiza has lost highly conserved genes involved in de novo methylation of DNA at sites often associated with repetitive DNA, and within genes, however, symmetrical DNA methylation and heterochromatin are maintained during cell division at certain transposons and repeats. Consequently, small RNAs that normally guide methylation to silence repetitive DNA like retrotransposons are diminished. Despite the loss of a highly conserved methylation pathway, and the reduction of small RNAs that normally target repetitive DNA, transposons have not proliferated in the genome, perhaps due in part to the rapid, clonal growth lifestyle of duckweeds.


Asunto(s)
Metilación de ADN , Genoma de Planta , Filogenia , Heterocromatina , ADN
13.
bioRxiv ; 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-37786710

RESUMEN

Single-cell ATAC-seq has emerged as a powerful approach for revealing candidate cis-regulatory elements genome-wide at cell-type resolution. However, current single-cell methods suffer from limited throughput and high costs. Here, we present a novel technique called single-cell combinatorial fluidic indexing ATAC-sequencing ("scifi-ATAC-seq"), which combines a barcoded Tn5 pre-indexing step with droplet-based single-cell ATAC-seq using a widely commercialized microfluidics platform (10X Genomics). With scifi-ATAC-seq, up to 200,000 nuclei across multiple samples in a single emulsion reaction can be indexed, representing a ~20-fold increase in throughput compared to the standard 10X Genomics workflow.

14.
Front Plant Sci ; 14: 1288826, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965014

RESUMEN

Humans have been modifying plant traits for thousands of years, first through selection (i.e., domestication) then modern breeding, and in the last 30 years, through biotechnology. These modifications have resulted in increased yield, more efficient agronomic practices, and enhanced quality traits. Precision knowledge of gene regulation and function through high-resolution single-cell omics technologies, coupled with the ability to engineer plant genomes at the DNA sequence, chromatin accessibility, and gene expression levels, can enable engineering of complex and complementary traits at the biosystem level. Populus spp., the primary genetic model system for woody perennials, are among the fastest growing trees in temperate zones and are important for both carbon sequestration and global carbon cycling. Ample genomic and transcriptomic resources for poplar are available including emerging single-cell omics datasets. To expand use of poplar outside of valorization of woody biomass, chassis with novel morphotypes in which stem branching and tree height are modified can be fabricated thereby leading to trees with altered leaf to wood ratios. These morphotypes can then be engineered into customized chemotypes that produce high value biofuels, bioproducts, and biomaterials not only in specific organs but also in a cell-type-specific manner. For example, the recent discovery of triterpene production in poplar leaf trichomes can be exploited using cell-type specific regulatory sequences to synthesize high value terpenes such as the jet fuel precursor bisabolene specifically in the trichomes. By spatially and temporally controlling expression, not only can pools of abundant precursors be exploited but engineered molecules can be sequestered in discrete cell structures in the leaf. The structural diversity of the hemicellulose xylan is a barrier to fully utilizing lignocellulose in biomaterial production and by leveraging cell-type-specific omics data, cell wall composition can be modified in a tailored and targeted specific manner to generate poplar wood with novel chemical features that are amenable for processing or advanced manufacturing. Precision engineering poplar as a multi-purpose sustainable feedstock highlights how genome engineering can be used to re-imagine a crop species.

15.
Front Plant Sci ; 14: 1279231, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023853

RESUMEN

Introduction: Gene expression is often controlled via cis-regulatory elements (CREs) that modulate the production of transcripts. For multi-gene genetic engineering and synthetic biology, precise control of transcription is crucial, both to insulate the transgenes from unwanted native regulation and to prevent readthrough or cross-regulation of transgenes within a multi-gene cassette. To prevent this activity, insulator-like elements, more properly referred to as transcriptional blockers, could be inserted to separate the transgenes so that they are independently regulated. However, only a few validated insulator-like elements are available for plants, and they tend to be larger than ideal. Methods: To identify additional potential insulator-like sequences, we conducted a genome-wide analysis of Utricularia gibba (humped bladderwort), one of the smallest known plant genomes, with genes that are naturally close together. The 10 best insulator-like candidates were evaluated in vivo for insulator-like activity. Results: We identified a total of 4,656 intergenic regions with expression profiles suggesting insulator-like activity. Comparisons of these regions across 45 other plant species (representing Monocots, Asterids, and Rosids) show low levels of syntenic conservation of these regions. Genome-wide analysis of unmethylated regions (UMRs) indicates ~87% of the targeted regions are unmethylated; however, interpretation of this is complicated because U. gibba has remarkably low levels of methylation across the genome, so that large UMRs frequently extend over multiple genes and intergenic spaces. We also could not identify any conserved motifs among our selected intergenic regions or shared with existing insulator-like elements for plants. Despite this lack of conservation, however, testing of 10 selected intergenic regions for insulator-like activity found two elements on par with a previously published element (EXOB) while being significantly smaller. Discussion: Given the small number of insulator-like elements currently available for plants, our results make a significant addition to available tools. The high hit rate (2 out of 10) also implies that more useful sequences are likely present in our selected intergenic regions; additional validation work will be required to identify which will be most useful for plant genetic engineering.

16.
bioRxiv ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37808859

RESUMEN

Unstable transcripts have emerged as markers of active enhancers in vertebrates and shown to be involved in many cellular processes and medical disorders. However, their prevalence and role in plants is largely unexplored. Here, we comprehensively captured all actively initiating ("nascent") transcripts across diverse crops and other plants using capped small (cs)RNA-seq. We discovered that unstable transcripts are rare, unlike in vertebrates, and often originate from promoters. Additionally, many "distal" elements in plants initiate tissue-specific stable transcripts and are likely bone fide promoters of yet-unannotated genes or non-coding RNAs, cautioning against using genome annotations to infer "enhancers" or transcript stability. To investigate enhancer function, we integrated STARR-seq data. We found that annotated promoters, and other regions that initiate stable transcripts rather than unstable transcripts, function as stronger enhancers in plants. Our findings underscore the blurred line between promoters and enhancers and suggest that cis-regulatory elements encompass diverse structures and mechanisms in eukaryotes.

17.
bioRxiv ; 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37905150

RESUMEN

The genomes of Leishmania and trypanosomes are organized into polycistronic transcription units flanked by a modified DNA base J involved in promoting RNA polymerase II (Pol II) termination. We recently characterized a Leishmania complex containing a J-binding protein, PP1 protein phosphatase 1, and PP1 regulatory protein (PNUTS) that controls transcription termination potentially via dephosphorylation of Pol II by PP1. While T. brucei contains eight PP1 isoforms, none purified with the PNUTS complex, suggesting a unique PP1-independent mechanism of termination. We now demonstrate that the PP1-binding motif of TbPNUTS is required for function in termination in vivo and that TbPP1-1 modulates Pol II termination in T. brucei involving dephosphorylation of the C-terminal domain of the large subunit of Pol II. PP1-1 knock-down results in increased cellular levels of phosphorylated large subunit of Pol II accompanied by readthrough transcription and pervasive transcription of the entire genome by Pol II, including Pol I transcribed loci that are typically silent, such as telomeric VSG expression sites involved in antigenic variation and production of TERRA RNA. These results provide important insights into the mechanism underlying Pol II transcription termination in primitive eukaryotes that rely on polycistronic transcription and maintain allelic exclusion of VSG genes.

18.
Plant J ; 116(4): 1003-1017, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37675609

RESUMEN

Populus species play a foundational role in diverse ecosystems and are important renewable feedstocks for bioenergy and bioproducts. Hybrid aspen Populus tremula × P. alba INRA 717-1B4 is a widely used transformation model in tree functional genomics and biotechnology research. As an outcrossing interspecific hybrid, its genome is riddled with sequence polymorphisms which present a challenge for sequence-sensitive analyses. Here we report a telomere-to-telomere genome for this hybrid aspen with two chromosome-scale, haplotype-resolved assemblies. We performed a comprehensive analysis of the repetitive landscape and identified both tandem repeat array-based and array-less centromeres. Unexpectedly, the most abundant satellite repeats in both haplotypes lie outside of the centromeres, consist of a 147 bp monomer PtaM147, frequently span >1 megabases, and form heterochromatic knobs. PtaM147 repeats are detected exclusively in aspens (section Populus) but PtaM147-like sequences occur in LTR-retrotransposons of closely related species, suggesting their origin from the retrotransposons. The genomic resource generated for this transformation model genotype has greatly improved the design and analysis of genome editing experiments that are highly sensitive to sequence polymorphisms. The work should motivate future hypothesis-driven research to probe into the function of the abundant and aspen-specific PtaM147 satellite DNA.


Asunto(s)
ADN Satélite , Populus , ADN Satélite/genética , Haplotipos/genética , Populus/genética , Ecosistema , Retroelementos , Centrómero/genética
19.
Annu Rev Genet ; 57: 297-319, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37562412

RESUMEN

The ease and throughput of single-cell genomics have steadily improved, and its current trajectory suggests that surveying single-cell populations will become routine. We discuss the merger of quantitative genetics with single-cell genomics and emphasize how this synergizes with advantages intrinsic to plants. Single-cell population genomics provides increased detection resolution when mapping variants that control molecular traits, including gene expression or chromatin accessibility. Additionally, single-cell population genomics reveals the cell types in which variants act and, when combined with organism-level phenotype measurements, unveils which cellular contexts impact higher-order traits. Emerging technologies, notably multiomics, can facilitate the measurement of both genetic changes and genomic traits in single cells, enabling single-cell genetic experiments. The implementation of single-cell genetics will advance the investigation of the genetic architecture of complex molecular traits and provide new experimental paradigms to study eukaryotic genetics.


Asunto(s)
Genómica , Herencia Multifactorial , Fenotipo , Genoma , Plantas/genética
20.
Epigenetics Chromatin ; 16(1): 28, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393253

RESUMEN

BACKGROUND: The function of DNA methyltransferase genes of insects is a puzzle, because an association between gene expression and methylation is not universal for insects. If the genes normally involved in cytosine methylation are not influencing gene expression, what might be their role? We previously demonstrated that gametogenesis of Oncopeltus fasciatus is interrupted at meiosis following knockdown of DNA methyltransferase 1 (Dnmt1) and this is unrelated to changes in levels of cytosine methylation. Here, using transcriptomics, we tested the hypothesis that Dmnt1 is a part of the meiotic gene pathway. Testes, which almost exclusively contain gametes at varying stages of development, were sampled at 7 days and 14 days following knockdown of Dmnt1 using RNAi. RESULTS: Using microscopy, we found actively dividing spermatocysts were reduced at both timepoints. However, as with other studies, we saw Dnmt1 knockdown resulted in condensed nuclei after mitosis-meiosis transition, and then cellular arrest. We found limited support for a functional role for Dnmt1 in our predicted cell cycle and meiotic pathways. An examination of a priori Gene Ontology terms showed no enrichment for meiosis. We then used the full data set to reveal further candidate pathways influenced by Dnmt1 for further hypotheses. Very few genes were differentially expressed at 7 days, but nearly half of all transcribed genes were differentially expressed at 14 days. We found no strong candidate pathways for how Dnmt1 knockdown was achieving its effect through Gene Ontology term overrepresentation analysis. CONCLUSIONS: We, therefore, suggest that Dmnt1 plays a role in chromosome dynamics based on our observations of condensed nuclei and cellular arrest with no specific molecular pathways disrupted.


Asunto(s)
Meiosis , Espermatogénesis , Masculino , Animales , Metilasas de Modificación del ADN , Insectos , Citosina , ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA