Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Vasc Interv Radiol ; 33(2): 104-112, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34653607

RESUMEN

PURPOSE: To evaluate the potential benefits of digital variance angiography (DVA) in selective lower limb angiography and to compare the performance of 2 DVA algorithms (conventional DVA1 and the recently developed DVA2) to that of digital subtraction angiography (DSA). MATERIALS AND METHODS: From November 2019 to May 2020, 112 iodinated contrast media (ICM) and 40 carbon dioxide (CO2) angiograms were collected from 15 and 13 peripheral artery disease patients, respectively. The DVA files were retrospectively generated from the same unsubtracted source file as DSA. The objectively calculated contrast-to-noise ratio (CNR) and the subjective visual image quality of DSA, DVA1, and DVA2 images were statistically compared using the Wilcoxon signed-rank test. The images were evaluated by 6 radiologists (R.P.T., S.V., A.M.K., S.S.A., O.E., and J.S.) from 2 centers using a 5-grade Likert scale. RESULTS: Both DVA algorithms produced similar increase (at least 2-fold) in CNR values (P < .001) and significantly higher image quality scores than DSA, independent of the contrast agent used. The overall scores with ICM were 3.61 ± 0.05 for DSA, 4.30 ± 0.04 for DVA1, and 4.33 ± 0.04 for DVA2 (each P < .001 vs DSA). The scores for CO2 were 3.10 ± 0.14 for DSA, 3.63 ± 0.13 for DVA1 (P < .001 vs DSA), and 3.38 ± 0.13 for DVA2 (P < .05 vs DSA). CONCLUSIONS: DVA provides higher CNR and significantly better image quality in selective lower limb interventions irrespective of the contrast agent used. Between DVA algorithms, DVA1 is preferred because of its identical or better image quality than DVA2. DVA can potentially help the interventional decision process and its quality reserve might allow dose management (radiation/ICM reduction) in the future.


Asunto(s)
Extremidad Inferior , Enfermedad Arterial Periférica , Angiografía de Substracción Digital/métodos , Medios de Contraste , Humanos , Extremidad Inferior/irrigación sanguínea , Enfermedad Arterial Periférica/diagnóstico por imagen , Estudios Retrospectivos
2.
Health Phys ; 120(6): 641-647, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33879646

RESUMEN

ABSTRACT: The maximum annual radiation ocular dose limit for medical staff has been reduced to 20 mSv in the current European directive 2013/59/Euratom. This multi-centric study aims at reporting the protected and unprotected eye lens doses in different fluoroscopically guided interventions and to evaluate any other factors that could influence the ocular dose. From July 2018 to July 2019, ocular radiation doses of six interventionists of four departments during complex interventions were recorded with a thermoluminescent dosimeter in front of and behind radiation protection glasses to measure the protected and unprotected doses. The position of personnel, intervention type, fluoroscopy time, total body dose and use of pre-installed protection devices like lead acrylic shields were also systematically recorded. Linear regression analysis was used to estimate the doses at 2 y and 5 y. The annual unprotected/protected ocular doses of six interventionists were 67/21, 32.7/3.3, 27.4/5.1, 7/0, 21.8/2.2, and 0/0 mSv, respectively. The unprotected dose crossed the 20-mSv annual limits for four interventionists and protected dose for one less experienced interventionist. The estimated 5-y protected ocular dose of this interventionist was 101.318 mSv (95%CI 96.066-106.57), also crossing the 5-y limit. The use of a lead acrylic shield was observed to have a significant effect in reducing ocular doses. The annual unprotected and protected ocular doses for interventionists dealing with complex interventions could cross the present permitted yearly limit. The measurement of significant protected ocular dose behind the radiation protection glasses emphasizes the additional indispensable role of pre-installed radiation protection devices and training in reducing radiation doses for complex procedures.


Asunto(s)
Cristalino , Exposición Profesional , Exposición a la Radiación , Protección Radiológica , Dispositivos de Protección de los Ojos , Humanos , Cristalino/efectos de la radiación , Exposición Profesional/análisis , Exposición Profesional/prevención & control , Dosis de Radiación , Exposición a la Radiación/análisis , Exposición a la Radiación/prevención & control , Protección Radiológica/métodos , Rayos X
3.
Cardiovasc Intervent Radiol ; 41(7): 1074-1080, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29687260

RESUMEN

PURPOSE: The annual permissible radiation ocular lens dose has been reduced to 20 millisieverts (mSv) in the current European directive 2013/59/Euratom. The aim of this study was to evaluate the personal radiation dose for vascular interventions with special focus on ocular lens dose. MATERIALS AND METHODS: From May 2016 to October 2016, the personal radiation doses of two interventionists and four technicians were prospectively recorded during 206 vascular interventions. The position of personnel, intervention type and fluoroscopy time were recorded. Parameters evaluated were total body dose measured by film dosimeter, hand dose measured by ring thermoluminescent dosimeter (TLD) and ocular lens dose measured by TLD placed in front of the safety glasses. Linear regression analysis was used to estimate the dose at 2 and 5 years. RESULTS: The ocular lens dose, hand and total body dose of the two interventionists were 11/5, 56/47 and 0.6 mSv each, respectively. The estimated 5-year ocular dose was 113.08 mSv (95% CI 38.2-187.97)/40.95 (95% CI 16.9-64.7). Similarly, hand dose was 608.4 mSv (95% CI 442.78-774.38)/514.47 (95% CI 329.83-699.10) and body dose 6.07 mSv (95% CI 4.70-8.22)/5.12 (95% CI 3.65-6.59), respectively. Amongst four technicians, only the first assistant showed recordings of 0.3 mSv body dose, 2 mSv ocular lens dose and 5 mSv hand dose. CONCLUSION: The yearly ocular lens dose, particularly for interventionists dealing with complex interventions, could cross the permitted yearly limit set by the new Euratom directive. Therefore, X-ray safety glasses would become mandatory for complex radiological vascular interventions. LEVEL OF EVIDENCE: Level III, non-randomized controlled cohort/follow-up study.


Asunto(s)
Dispositivos de Protección de los Ojos , Exposición Profesional/prevención & control , Traumatismos por Radiación/prevención & control , Protección Radiológica/instrumentación , Radiografía Intervencional/efectos adversos , Enfermedades Vasculares/terapia , Europa (Continente) , Femenino , Fluoroscopía/efectos adversos , Estudios de Seguimiento , Guías como Asunto , Humanos , Estudios Prospectivos , Dosímetros de Radiación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA