Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2702: 247-260, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37679623

RESUMEN

The most common and robust in vitro technology to generate monoclonal human antibodies is phage display. This technology is a widely used and powerful key technology for recombinant antibody selection. Phage display-derived antibodies are used as research tools, in diagnostic assays, and by 2022, 14 phage display-derived therapeutic antibodies were approved. In this review, we describe a fast high-throughput antibody (scFv) selection procedure in 96-well microtiter plates. The given detailed protocol allows the antibody selection ("panning"), screening, and identification of monoclonal antibodies in less than 2 weeks. Furthermore, we describe an on-rate panning approach for the selection of monoclonal antibodies with fast on-rates.


Asunto(s)
Anticuerpos Monoclonales , Bacteriófagos , Humanos , Anticuerpos Monoclonales/genética , Bioensayo , Técnicas de Visualización de Superficie Celular , Tecnología
2.
Methods Mol Biol ; 2702: 411-417, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37679632

RESUMEN

The antigen-binding ability of each antibody clone selected by phage display is usually initially ranked by a screening ELISA using monovalent scFv antibody fragments. Further characterization often requires bivalent antibody molecules such as IgG or scFv-Fc fusions. To produce these, the V region encoding genes of selected hits have to be cloned into a mammalian expression vector and analyzed as a bivalent molecule, requiring a laborious cloning procedure. We established a high-throughput procedure allowing rapid screening of candidates in bivalent formats. This protocol allows for the parallelized cloning of all selected antibody fragments into a mammalian expression vector in the 96-well plate format. The bivalent antibody molecules can then be produced and purified in 96-well plates for further analysis in microtiter plate assays.


Asunto(s)
Anticuerpos , Fragmentos de Inmunoglobulinas , Animales , Ensayo de Inmunoadsorción Enzimática , Bioensayo , Técnicas de Visualización de Superficie Celular , Mamíferos
3.
Viruses ; 14(10)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36298643

RESUMEN

Virus-like particles (VLPs) resemble authentic virus while not containing any genomic information. Here, we present a fast and powerful method for the production of SARS-CoV-2 VLP in insect cells and the application of these VLPs to evaluate the inhibition capacity of monoclonal antibodies and sera of vaccinated donors. Our method avoids the baculovirus-based approaches commonly used in insect cells by employing direct plasmid transfection to co-express SARS-CoV-2 envelope, membrane, and spike protein that self-assemble into VLPs. After optimization of the expression plasmids and vector ratios, VLPs with an ~145 nm diameter and the typical "Corona" aura were obtained, as confirmed by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Fusion of the membrane protein to GFP allowed direct quantification of binding inhibition to angiotensin II-converting enzyme 2 (ACE2) on cells by therapeutic antibody candidates or sera from vaccinated individuals. Neither VLP purification nor fluorescent labeling by secondary antibodies are required to perform these flow cytometric assays.


Asunto(s)
Baculoviridae , COVID-19 , Humanos , Animales , Baculoviridae/genética , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2 , Glicoproteína de la Espiga del Coronavirus/genética , Angiotensina II , Insectos , Anticuerpos Monoclonales
4.
Biol Chem ; 403(5-6): 479-494, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35312243

RESUMEN

One of the most widely used epitope tags is the myc-tag, recognized by the anti-c-Myc hybridoma antibody Myc1-9E10. Combining error-prone PCR, DNA shuffling and phage display, we generated an anti-c-Myc antibody variant (Hyper-Myc) with monovalent affinity improved to 18 nM and thermal stability increased by 37%. Quantification of capillary immunoblots and by flow cytometry demonstrated improved antigen detection by Hyper-Myc. Further, three different species variants of this antibody were generated to allow the use of either anti-human, anti-mouse or anti-rabbit Fc secondary antibodies for detection. We characterized the specificity of both antibodies in depth: individual amino acid exchange mapping demonstrated that the recognized epitope was not changed by the in vitro evolution process. A laser printed array of 29,127 different epitopes representing all human linear B-cell epitopes of the Immune Epitope Database allowing to chart unwanted reactivities with mimotopes showed these to be very low for both antibodies and not increased for Hyper-Myc despite its improved affinity. The very low background reactivity of Hyper-Myc was confirmed by staining of myc-tag transgenic zebrafish whole mounts. Hyper-Myc retains the very high specificity of Myc1-9E10 while allowing myc-tag detection at lower concentrations and with either anti-mouse, anti-rabbit or anti human secondary antibodies.


Asunto(s)
Anticuerpos Monoclonales , Pez Cebra , Animales , Anticuerpos Monoclonales/química , Mapeo Epitopo , Epítopos , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Conejos
5.
Front Cell Infect Microbiol ; 11: 717689, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869052

RESUMEN

Generation of sequence defined antibodies from universal libraries by phage display has been established over the past three decades as a robust method to cope with the increasing market demand in therapy, diagnostics and research. For applications requiring the bivalent antigen binding and an Fc part for detection, phage display generated single chain Fv (scFv) antibody fragments can rapidly be genetically fused to the Fc moiety of an IgG for the production in eukaryotic cells of antibodies with IgG-like properties. In contrast to conversion of scFv into IgG format, the conversion to scFv-Fc requires only a single cloning step, and provides significantly higher yields in transient cell culture production than IgG. ScFv-Fcs can be effective as neutralizing antibodies in vivo against a panel of pathogens and toxins. However, different scFv fragments are more heterologous in respect of stability than Fab fragments. While some scFv fragments can be made extremely stable, this may change due to few mutations, and is not predictable from the sequence of a newly selected antibody. To mitigate the necessity to assess the stability for every scFv-Fc antibody, we developed a generic lyophilization protocol to improve their shelf life. We compared long-term stability and binding activity of phage display-derived antibodies in the scFv-Fc and IgG format, either stored in liquid or lyophilized state. Conversion of scFv-Fcs into the full IgG format reduced protein degradation and aggregation, but in some cases compromised binding activity. Comparably to IgG conversion, lyophilization of scFv-Fc resulted in the preservation of the antibodies' initial properties after storage, without any drop in affinity for any of the tested antibody clones.


Asunto(s)
Anticuerpos de Cadena Única , Anticuerpos Neutralizantes , Técnicas de Visualización de Superficie Celular , Liofilización , Esperanza de Vida , Anticuerpos de Cadena Única/genética
6.
Cell Rep ; 36(4): 109433, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34273271

RESUMEN

The novel betacoronavirus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causes a form of severe pneumonia disease called coronavirus disease 2019 (COVID-19). To develop human neutralizing anti-SARS-CoV-2 antibodies, antibody gene libraries from convalescent COVID-19 patients were constructed and recombinant antibody fragments (scFv) against the receptor-binding domain (RBD) of the spike protein were selected by phage display. The antibody STE90-C11 shows a subnanometer IC50 in a plaque-based live SARS-CoV-2 neutralization assay. The in vivo efficacy of the antibody is demonstrated in the Syrian hamster and in the human angiotensin-converting enzyme 2 (hACE2) mice model. The crystal structure of STE90-C11 Fab in complex with SARS-CoV-2-RBD is solved at 2.0 Å resolution showing that the antibody binds at the same region as ACE2 to RBD. The binding and inhibition of STE90-C11 is not blocked by many known emerging RBD mutations. STE90-C11-derived human IgG1 with FcγR-silenced Fc (COR-101) is undergoing Phase Ib/II clinical trials for the treatment of moderate to severe COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/virología , Humanos , Mutación/genética , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Dominios Proteicos/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
7.
Front Cell Infect Microbiol ; 11: 697876, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307196

RESUMEN

Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.


Asunto(s)
Bacteriófagos , COVID-19 , Enfermedades Transmisibles , Animales , Anticuerpos Monoclonales , Enfermedades Transmisibles/diagnóstico , Enfermedades Transmisibles/terapia , Humanos , Pandemias , SARS-CoV-2
8.
Nat Commun ; 12(1): 1577, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707427

RESUMEN

COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2, a new recently emerged sarbecovirus. This virus uses the human ACE2 enzyme as receptor for cell entry, recognizing it with the receptor binding domain (RBD) of the S1 subunit of the viral spike protein. We present the use of phage display to select anti-SARS-CoV-2 spike antibodies from the human naïve antibody gene libraries HAL9/10 and subsequent identification of 309 unique fully human antibodies against S1. 17 antibodies are binding to the RBD, showing inhibition of spike binding to cells expressing ACE2 as scFv-Fc and neutralize active SARS-CoV-2 virus infection of VeroE6 cells. The antibody STE73-2E9 is showing neutralization of active SARS-CoV-2 as IgG and is binding to the ACE2-RBD interface. Thus, universal libraries from healthy human donors offer the advantage that antibodies can be generated quickly and independent from the availability of material from recovering patients in a pandemic situation.


Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/química , Animales , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Afinidad de Anticuerpos , COVID-19/epidemiología , Línea Celular , Chlorocebus aethiops , Biblioteca de Genes , Voluntarios Sanos , Interacciones Microbiota-Huesped/inmunología , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/aislamiento & purificación , Modelos Moleculares , Mutación , Pruebas de Neutralización , Pandemias , Biblioteca de Péptidos , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...