Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Neurochem Res ; 47(11): 3250-3260, 2022 Nov.
Article En | MEDLINE | ID: mdl-35750876

Epilepsy is a common neurological disorder which affects 50 million people worldwide. Patients with epilepsy may present cognitive deficits and psychological impairment. Currently, 30% of patients fail to respond to any available antiseizure drug, and a significant number of patients do not well tolerate the offered treatments. Then, it is necessary to find out alternatives for controlling epileptic seizures. Studies have shown that despite its neuroprotective effects, resveratrol shows poor anticonvulsant properties. Resveratrol analog, piceatannol, possesses higher biological activity than resveratrol and could be an alternative to control seizure. Thus, the present study investigated the effects of resveratrol and piceatannol in pentylenetetrazole-induced seizures in adult zebrafish (Danio rerio). Only the experimental positive control (diazepam) showed anticonvulsant effect in this study. In addition, no behavioral changes were observed 24 h after seizure occurrence. Finally, the expression of genes related to neuronal activity (c-fos), neurogenesis (p70S6Ka and p70S6Kb), inflammatory response (interleukin 1ß), and cell apoptosis (caspase-3) did not change by pentylenetetrazole-induced seizures. Therefore, we failed to observe any anticonvulsant and neuroprotective potential of resveratrol and piceatannol in adult zebrafish. However, resveratrol and piceatannol benefits in epilepsy are not discharged, and more studies are necessary.


Epilepsy , Neuroprotective Agents , Animals , Anticonvulsants/adverse effects , Caspase 3 , Diazepam/therapeutic use , Epilepsy/drug therapy , Interleukin-1beta , Neuroprotective Agents/adverse effects , Pentylenetetrazole/toxicity , Resveratrol/pharmacology , Resveratrol/therapeutic use , Seizures/chemically induced , Seizures/drug therapy , Stilbenes , Zebrafish
2.
Neurochem Res ; 46(11): 3025-3034, 2021 Nov.
Article En | MEDLINE | ID: mdl-34309774

Epilepsy affects around 50 million people worldwide, and an important number of patients (30%) fail to respond to any available antiepileptic drug. Previous studies have shown that luteolin presents a promising potential as an anticonvulsant. On the other hand, different studies showed that luteolin does not promote anticonvulsant effects. Therefore, there is a lack of consensus about the use of luteolin for seizure control. Luteolin low bioavailability could be a limiting factor to obtain better results. Attractively, micronization technology has been applied to improve flavonoids bioavailability. Thus, the present study aimed to investigate the effects of luteolin on its raw form and micronized luteolin in a PTZ-induced seizure model in adult zebrafish (Danio rerio). Our results demonstrate that luteolin and micronized luteolin did not block PTZ-induced seizures in adult zebrafish. Also, luteolin and micronized luteolin did not provoke behavioral changes. Finally, our results show that 24 h after seizure occurrence, no changes were detected for p70S6Kb, interleukin 1ß, and caspase-3 transcript levels. Altogether, we failed to observe an anticonvulsant potential of luteolin in adult zebrafish, even in its micronized form. However, we recommend new studies to investigate luteolin benefits in epilepsy.


Anticonvulsants/administration & dosage , Anticonvulsants/chemical synthesis , Luteolin/administration & dosage , Luteolin/chemical synthesis , Seizures/drug therapy , Age Factors , Animals , Dose-Response Relationship, Drug , Female , Male , Particle Size , Pentylenetetrazole/toxicity , Seizures/chemically induced , Zebrafish
3.
Neurochem Res ; 46(2): 241-251, 2021 Feb.
Article En | MEDLINE | ID: mdl-33108629

Epilepsy affects 50 million people around the world, and the patients experience cognitive, psychological and social consequences. Despite the considerable quantity of antiepileptic drugs available, 30% of patients still suffer in seizure. Therefore, the advance in therapeutic alternatives is mandatory. Resveratrol has been attracting the attention of many researchers because of its pharmacological potential. However, despite its neuroprotective and anti-epileptic effects, clinical resveratrol use is impaired by its low bioavailability. Here, we applied the supercritical fluid micronization technology (SEDS) to overcome this deficit, and investigated the anticonvulsant potential of micronized resveratrol in a PTZ-induced seizure model in adult zebrafish (Danio rerio). SEDS permits obtaining significantly reduced particle size with a fine size distribution in comparison with the starting material. It can improve the pharmacotherapeutic efficacy. Our data showed that micronized resveratrol decreased the occurrence of the tonic-clonic seizure stage and slowed the development of the seizures in a similar manner of diazepam. Non-processed resveratrol was not able to protect the animals. Furthermore, diazepam decreased the locomotion and exploratory behavior. Differently from diazepam, the micronized resveratrol did not induce behavioral adverse events. In addition, our data showed that the PTZ-induced seizures increased the c-fos transcript levels following the neural excitability. However, the increase in c-fos levels was prevented by micronized resveratrol. In conclusion, our results demonstrate that the micronized resveratrol shows anticonvulsant effect, like the classical antiepileptic drug diazepam in a PTZ-induced seizure model. Excitingly, different from diazepam, micronized resveratrol did not provoke behavioral adverse events.


Anticonvulsants/therapeutic use , Resveratrol/therapeutic use , Seizures/drug therapy , Animals , Anticonvulsants/chemistry , Diazepam/therapeutic use , Female , Locomotion/drug effects , Male , Particle Size , Pentylenetetrazole , Proto-Oncogene Proteins c-fos/metabolism , Resveratrol/chemistry , Seizures/chemically induced , Zebrafish
4.
Environ Sci Pollut Res Int ; 27(36): 45874-45882, 2020 Dec.
Article En | MEDLINE | ID: mdl-32803608

2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the most commonly used herbicides worldwide. While the effects of 2,4-D in target organisms are well known, its consequences in nontarget organisms are not fully explained. Therefore, the purpose of this study was to investigate the effects of the herbicide on mitochondrial energy metabolism, oxidative status, and exploratory behavior in adult zebrafish. Animal exposure to 2,4-D increased cytochrome c oxidase and catalase activities and reduced SOD/CAT ratio, moreover, increased the total distance traveled and the number of crossings. Finally, animals exposed to 2,4-D spent more time in the upper zone of the tank and traveled a long distance in the upper zone. Overall, our results indicate the 2,4-D can provoke disabling effects in nontarget organisms. The obtained data showed that exposure to 2,4-D at environmentally relevant concentrations alters mitochondrial metabolism and antioxidant status and disturbs the zebrafish innate behavior.


Herbicides , Zebrafish , 2,4-Dichlorophenoxyacetic Acid/toxicity , Animals , Herbicides/toxicity , Mitochondria , Oxidative Stress
5.
Environ Sci Pollut Res Int ; 27(17): 21468-21475, 2020 Jun.
Article En | MEDLINE | ID: mdl-32277412

Different veterinary drugs have been widely found in surface and groundwater, affecting non-target organisms. Ractopamine (RAC) is one of these drugs found in water bodies. It is a ß-adrenergic agonist used as a feed additive to modulate the metabolism, redirect nutrients from the adipose tissue towards muscles, and increase protein synthesis in swine, cattle, and turkeys. RAC shows toxicological potential, but there is no data about its impacts on the development of non-target organisms, such as zebrafish (Danio rerio). In this study, we evaluated the effect of the exposure to this feed additive on critical parameters (hatching, survival, spontaneous movement, heart rate, and exploratory and locomotor behavior) in zebrafish embryos and larvae. The animals were exposed to RAC hydrochloride at 0.1, 0.2, 0.85, 8.5, and 85 µg/L. Zebrafish exposed to the drug showed increased heart rate at all tested concentrations and alterations on locomotion and exploratory behavior at 85 µg/L. No changes were observed in the survival, hatching rate and spontaneous movement. Our results suggest that RAC present in the environment can induce disabling effects on non-target organisms and elicit an ecological imbalance by increasing the animals' vulnerability to predation due to greater visibility.


Water Pollutants, Chemical , Zebrafish , Animals , Cattle , Embryo, Nonmammalian , Heart Rate , Larva , Phenethylamines , Swine
6.
Epilepsy Res ; 159: 106243, 2020 01.
Article En | MEDLINE | ID: mdl-31786493

Resveratrol is a natural non-flavonoid polyphenolic that has been emerging in epilepsy treatment. Despite its pharmacological properties, the poor bioavailability of resveratrol has been an important barrier that hinders its application as an anticonvulsant. The aim of this work was to improve resveratrol's anticonvulsant effects by micronizing this compound through supercritical fluid micronization technology, which promotes an increase of the particles' surface area and allows significantly reduced particle size to be obtained. We obtained commercial and micronized resveratrol and investigated the anticonvulsant effects of resveratrol as commercially found and micronized resveratrol in a pentylenetetrazole-induced seizure model in zebrafish (Danio rerio) larvae. Diazepam was used as the positive control. Also, animals had their locomotor and exploratory activity analyzed 24 h after the seizure occurrence. The occurrence of the tonic-clonic seizure stage was only prevented by diazepam and micronized resveratrol, unlike the non-processed compound. The seizure development was significantly slowed by diazepam and micronized resveratrol, while non-micronized resveratrol was not able to increase the latency of seizure stages. In addition, diazepam and micronized resveratrol prevented the deleterious effects of pentylenetetrazole-induced seizures on animals' locomotor and exploratory behaviour. Obtained data demonstrates that the micronization process potentiates the anticonvulsant effect of resveratrol. Micronized resveratrol achieved a similar effect to the classical drug diazepam, with the benefit that it may be a safe drug candidate to be used during the neurodevelopmental stage.


Anticonvulsants/therapeutic use , Resveratrol/therapeutic use , Seizures/drug therapy , Animals , Disease Models, Animal , Pentylenetetrazole , Seizures/chemically induced , Treatment Outcome , Zebrafish
...